LSHTM_analysis/scripts/plotting/mcsm_mean_affinity_ensemble.R

316 lines
12 KiB
R

#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/alr.R")
#source("~/git/LSHTM_analysis/config/gid.R")
source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
source("/home/tanu/git/LSHTM_analysis/my_header.R")
#########################################################
# TASK: Generate averaged affinity values
# across all affinity tools for a given structure
# as applicable...
#########################################################
#=============
# Input
#=============
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
df3 = read.csv(df3_filename)
length(df3$mutationinformation)
all_colnames= colnames(df3)
#%%===============================================================
# FIXME: ADD distance to NA when SP replies
dist_columns = c("ligand_distance", "interface_dist")
DistCutOff = 10
common_cols = c("mutationinformation"
, "X5uhc_position"
, "X5uhc_offset"
, "position"
, "dst_mode"
, "mutation_info_labels"
, "sensitivity", dist_columns )
all_colnames[grep("scaled" , all_colnames)]
all_colnames[grep("outcome" , all_colnames)]
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
#===================
# affinity cols
#===================
raw_cols_affinity = c("ligand_affinity_change"
, "mmcsm_lig"
, "mcsm_ppi2_affinity"
, "mcsm_na_affinity")
scaled_cols_affinity = c("affinity_scaled"
, "mmcsm_lig_scaled"
, "mcsm_ppi2_scaled"
, "mcsm_na_scaled" )
outcome_cols_affinity = c( "ligand_outcome"
, "mmcsm_lig_outcome"
, "mcsm_ppi2_outcome"
, "mcsm_na_outcome")
#===================
# conservation cols
#===================
# raw_cols_conservation = c("consurf_score"
# , "snap2_score"
# , "provean_score")
#
# scaled_cols_conservation = c("consurf_scaled"
# , "snap2_scaled"
# , "provean_scaled")
#
# # CANNOT strictly be used, as categories are not identical with conssurf missing altogether
# outcome_cols_conservation = c("provean_outcome"
# , "snap2_outcome"
# #consurf outcome doesn't exist
# )
all_cols= c(common_cols
,raw_cols_stability, scaled_cols_stability, outcome_cols_stability
, raw_cols_affinity, scaled_cols_affinity, outcome_cols_affinity)
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
#OutFile1
outfile_mean_aff = paste0(outdir_images, "/", tolower(gene)
, "_mean_ligand.csv")
print(paste0("Output file:", outfile_mean_aff))
#OutFile2
outfile_ppi2 = paste0(outdir_images, "/", tolower(gene)
, "_mean_ppi2.csv")
print(paste0("Output file:", outfile_ppi2))
#OutFile4
#outfile_mean_aff_priorty = paste0(outdir_images, "/", tolower(gene)
# , "_mean_affinity_priority.csv")
#print(paste0("Output file:", outfile_mean_aff_priorty))
#################################################################
#################################################################
# mut positions
length(unique(df3$position))
# mut_info checks
table(df3$mutation_info)
table(df3$mutation_info_orig)
table(df3$mutation_info_labels_orig)
# used in plots and analyses
table(df3$mutation_info_labels) # different, and matches dst_mode
table(df3$dst_mode)
# create column based on dst mode with different colname
table(is.na(df3$dst))
table(is.na(df3$dst_mode))
#===============
# Create column: sensitivity mapped to dst_mode
#===============
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
table(df3$sensitivity)
length(unique((df3$mutationinformation)))
all_colnames = as.data.frame(colnames(df3))
#===============
# select columns specific to gene
#===============
gene_aff_cols = colnames(df3)[colnames(df3)%in%c(outcome_cols_affinity
, scaled_cols_affinity)]
gene_common_cols = colnames(df3)[colnames(df3)%in%common_cols]
cols_to_extract = c(gene_common_cols
, gene_aff_cols)
cat("\nExtracting", length(cols_to_extract), "columns")
df3_plot = df3[, cols_to_extract]
table(df3_plot$mmcsm_lig_outcome)
table(df3_plot$ligand_outcome)
##############################################################
# mCSM-lig, mCSM-NA, mCSM-ppi2, mmCSM-lig
#########################################
cols_to_numeric = c("ligand_outcome"
, "mcsm_na_outcome"
, "mcsm_ppi2_outcome"
, "mmcsm_lig_outcome")
#=====================================
# mCSM-lig: Filter ligand distance <10
#DistCutOff = 10
#LigDist_colname = "ligand_distance"
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1 so rescaling can let -1 be destabilising
#=====================================
df3_lig = df3[, c("mutationinformation"
, "position"
, "ligand_distance"
, "ligand_affinity_change"
, "affinity_scaled"
, "ligand_outcome")]
df3_lig = df3_lig[df3_lig["ligand_distance"]<DistCutOff,]
expected_npos = sum(table(df3_lig["ligand_distance"]<DistCutOff))
expected_npos
if ( nrow(df3_lig) == expected_npos ){
cat(paste0("\nPASS:", LigDist_colname, " filtered according to criteria:", LigDist_cutoff, angstroms_symbol ))
}else{
stop(paste0("\nAbort:", LigDist_colname, " could not be filtered according to criteria:", LigDist_cutoff, angstroms_symbol))
}
# group by position
mean_lig_by_position <- df3_lig %>%
dplyr::group_by(position) %>%
#dplyr::summarize(avg_lig = max(df3_lig_num))
#dplyr::summarize(avg_lig = mean(ligand_outcome))
#dplyr::summarize(avg_lig = mean(affinity_scaled, na.rm = T))
dplyr::summarize(avg_lig = mean(ligand_affinity_change, na.rm = T))
class(mean_lig_by_position)
# convert to a df
mean_lig_by_position = as.data.frame(mean_lig_by_position)
table(mean_lig_by_position$avg_lig)
# REscale b/w -1 and 1
lig_min = min(mean_lig_by_position['avg_lig'])
lig_max = max(mean_lig_by_position['avg_lig'])
mean_lig_by_position['avg_lig_scaled'] = lapply(mean_lig_by_position['avg_lig']
, function(x) {
scales::rescale_mid(x
, to = c(-1,1)
, from = c(lig_min,lig_max)
, mid = 0)
#, from = c(0,1))
})
cat(paste0('Average (mcsm-lig+mmcsm-lig) scores:\n'
, head(mean_lig_by_position['avg_lig'])
, '\n---------------------------------------------------------------'
, '\nAverage (mcsm-lig+mmcsm-lig) scaled scores:\n'
, head(mean_lig_by_position['avg_lig_scaled'])))
if ( nrow(mean_lig_by_position) == length(unique(df3_lig$position)) ){
cat("\nPASS: Generated average values for ligand affinity" )
}else{
stop(paste0("\nAbort: length mismatch for ligand affinity data"))
}
max(mean_lig_by_position$avg_lig); min(mean_lig_by_position$avg_lig)
max(mean_lig_by_position$avg_lig_scaled); min(mean_lig_by_position$avg_lig_scaled)
#################################################################
# output
write.csv(mean_lig_by_position, outfile_mean_aff
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_aff
, "\nNo. of rows:", nrow(mean_lig_by_position)
, "\nNo. of cols:", ncol(mean_lig_by_position))
##################################################################
##################################################################
#=====================================
# mCSM-ppi2: Filter interface_dist <10
#DistCutOff = 10
#=====================================
df3_ppi2 = df3[, c("mutationinformation"
, "position"
, "interface_dist"
, "mcsm_ppi2_affinity"
, "mcsm_ppi2_scaled"
, "mcsm_ppi2_outcome")]
df3_ppi2 = df3_ppi2[df3_ppi2["interface_dist"]<DistCutOff,]
expected_npos = sum(table(df3_ppi2["interface_dist"]<DistCutOff))
expected_npos
if ( nrow(df3_ppi2) == expected_npos ){
cat(paste0("\nPASS:", "interface_dist", " filtered according to criteria:", LigDist_cutoff, angstroms_symbol ))
}else{
stop(paste0("\nAbort:", "interface_dist", " could not be filtered according to criteria:", LigDist_cutoff, angstroms_symbol))
}
# group by position
mean_ppi2_by_position <- df3_ppi2 %>%
dplyr::group_by(position) %>%
#dplyr::summarize(avg_ppi2 = max(df3_ppi2_num))
#dplyr::summarize(avg_ppi2 = mean(mcsm_ppi2_outcome))
#dplyr::summarize(avg_ppi2 = mean(mcsm_ppi2_scaled, na.rm = T))
dplyr::summarize(avg_ppi2 = mean(mcsm_ppi2_affinity, na.rm = T))
class(mean_ppi2_by_position)
# convert to a df
mean_ppi2_by_position = as.data.frame(mean_ppi2_by_position)
table(mean_ppi2_by_position$avg_ppi2)
# REscale b/w -1 and 1
lig_min = min(mean_ppi2_by_position['avg_ppi2'])
lig_max = max(mean_ppi2_by_position['avg_ppi2'])
mean_ppi2_by_position['avg_ppi2_scaled'] = lapply(mean_ppi2_by_position['avg_ppi2']
, function(x) {
scales::rescale_mid(x
, to = c(-1,1)
, from = c(lig_min,lig_max)
, mid = 0)
#, from = c(0,1))
})
cat(paste0('Average ppi2 scores:\n'
, head(mean_ppi2_by_position['avg_ppi2'])
, '\n---------------------------------------------------------------'
, '\nAverage ppi2 scaled scores:\n'
, head(mean_ppi2_by_position['avg_ppi2_scaled'])))
if ( nrow(mean_ppi2_by_position) == length(unique(df3_ppi2$position)) ){
cat("\nPASS: Generated average values for ppi2" )
}else{
stop(paste0("\nAbort: length mismatch for ppi2 data"))
}
max(mean_ppi2_by_position$avg_ppi2); min(mean_ppi2_by_position$avg_ppi2)
max(mean_ppi2_by_position$avg_ppi2_scaled); min(mean_ppi2_by_position$avg_ppi2_scaled)
write.csv(mean_ppi2_by_position, outfile_ppi2
, row.names = F)
cat("Finished writing file:\n"
, outfile_ppi2
, "\nNo. of rows:", nrow(mean_ppi2_by_position)
, "\nNo. of cols:", ncol(mean_ppi2_by_position))
# end of script
#===============================================================