LSHTM_analysis/scripts/plotting/structure_figures/mcsm_mean_stability.R

163 lines
5.7 KiB
R
Executable file

getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#########################################################
# TASK:
#########################################################
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
#require(data.table)
#require(dplyr)
source("plotting_data.R")
# should return
#my_df
#my_df_u
#dup_muts
# cmd parse arguments
#require('getopt', quietly = TRUE)
#========================================================
#========================================================
# Read file: call script for combining df for PS
#source("../combining_two_df.R")
#========================================================
# plotting_data.R imports all the dir names, etc
#=======
# output
#=======
out_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
outfile_mean_stability = paste0(outdir, "/", out_filename_mean_stability)
print(paste0("Output file:", outfile_mean_stability))
#%%===============================================================
#================
# Data for plots
#================
# REASSIGNMENT as necessary
df = my_df_u
rm(my_df)
###########################
# Data for bfactor figure
# PS (duet) average
# Ligand affinity average
###########################
head(df$position); head(df$mutationinformation)
head(df$duet_stability_change)
# order data frame
#df = df[order(df$position),] #already done
#head(df$position); head(df$mutationinformation)
#head(df$duet_stability_change)
#***********
# PS(duet): average by position and then scale b/w -1 and 1
# column to average: duet_stability_change (NOT scaled!)
#***********
mean_duet_by_position <- df %>%
group_by(position) %>%
summarize(averaged_duet = mean(duet_stability_change))
# scale b/w -1 and 1
duet_min = min(mean_duet_by_position['averaged_duet'])
duet_max = max(mean_duet_by_position['averaged_duet'])
# scale the averaged_duet values
mean_duet_by_position['averaged_duet_scaled'] = lapply(mean_duet_by_position['averaged_duet']
, function(x) ifelse(x < 0, x/abs(duet_min), x/duet_max))
cat(paste0('Average duet scores:\n', head(mean_duet_by_position['averaged_duet'])
, '\n---------------------------------------------------------------'
, '\nScaled duet scores:\n', head(mean_duet_by_position['averaged_duet_scaled'])))
# sanity checks
l_bound_duet = min(mean_duet_by_position['averaged_duet_scaled'])
u_bound_duet = max(mean_duet_by_position['averaged_duet_scaled'])
if ( (l_bound_duet == -1) && (u_bound_duet == 1) ){
cat(paste0("PASS: duet scores averaged by position and then scaled"
, "\nmin averaged duet: ", l_bound_duet
, "\nmax averaged duet: ", u_bound_duet))
}else{
cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
, "\nmin averaged duet: ", l_bound_duet
, "\nmax averaged duet: ", u_bound_duet))
quit()
}
#***********
# Lig: average by position and then scale b/w -1 and 1
# column: ligand_affinity_change (NOT scaled!)
#***********
mean_affinity_by_position <- df %>%
group_by(position) %>%
summarize(averaged_affinity = mean(ligand_affinity_change))
# scale b/w -1 and 1
affinity_min = min(mean_affinity_by_position['averaged_affinity'])
affinity_max = max(mean_affinity_by_position['averaged_affinity'])
# scale the averaged_affinity values
mean_affinity_by_position['averaged_affinity_scaled'] = lapply(mean_affinity_by_position['averaged_affinity']
, function(x) ifelse(x < 0, x/abs(affinity_min), x/affinity_max))
cat(paste0('Average affinity scores:\n', head(mean_affinity_by_position['averaged_affinity'])
, '\n---------------------------------------------------------------'
, '\nScaled affinity scores:\n', head(mean_affinity_by_position['averaged_affinity_scaled'])))
# sanity checks
l_bound_affinity = min(mean_affinity_by_position['averaged_affinity_scaled'])
u_bound_affinity = max(mean_affinity_by_position['averaged_affinity_scaled'])
if ( (l_bound_affinity == -1) && (u_bound_affinity == 1) ){
cat(paste0("PASS: affinity scores averaged by position and then scaled"
, "\nmin averaged affintiy: ", l_bound_affinity
, "\nmax averaged affintiy: ", u_bound_affinity))
}else{
cat(paste0("FAIL: avergaed affinity scores could not be scaled b/w -1 and 1"
, "\nmin averaged affintiy: ", l_bound_affinity
, "\nmax averaged affintiy: ", u_bound_affinity))
quit()
}
#***********
# merge: mean_duet_by_position and mean_affinity_by_position
#***********
common_cols = intersect(colnames(mean_duet_by_position), colnames(mean_affinity_by_position))
if (dim(mean_duet_by_position) && dim(mean_affinity_by_position)){
print(paste0("PASS: dim's match, mering dfs by column :", common_cols))
#combined = as.data.frame(cbind(mean_duet_by_position, mean_affinity_by_position ))
combined_df = as.data.frame(merge(mean_duet_by_position
, mean_affinity_by_position
, by = common_cols
, all = T))
cat(paste0("\nnrows combined_df:", nrow(combined_df)
, "\nnrows combined_df:", ncol(combined_df)))
}else{
cat(paste0("FAIL: dim's mismatch, aborting cbind!"
, "\nnrows df1:", nrow(mean_duet_by_position)
, "\nnrows df2:", nrow(mean_affinity_by_position)))
quit()
}
#%%============================================================
# output
write.csv(combined_df, outfile_mean_stability
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_stability
, "\nNo. of rows:", nrow(combined_df)
, "\nNo. of cols:", ncol(combined_df))
# end of script
#===============================================================