LSHTM_analysis/scripts/ml/log_alr_orig.txt
2022-06-20 21:55:47 +01:00

107 lines
3.2 KiB
Text

/home/tanu/git/LSHTM_analysis/scripts/ml/ml_data_orig.py:550: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
1.22.4
1.4.1
aaindex_df contains non-numerical data
Total no. of non-numerial columns: 2
Selecting numerical data only
PASS: successfully selected numerical columns only for aaindex_df
Now checking for NA in the remaining aaindex_cols
Counting aaindex_df cols with NA
ncols with NA: 4 columns
Dropping these...
Original ncols: 127
Revised df ncols: 123
Checking NA in revised df...
PASS: cols with NA successfully dropped from aaindex_df
Proceeding with combining aa_df with other features_df
PASS: ncols match
Expected ncols: 123
Got: 123
Total no. of columns in clean aa_df: 123
Proceeding to merge, expected nrows in merged_df: 271
PASS: my_features_df and aa_df successfully combined
nrows: 271
ncols: 269
count of NULL values before imputation
or_mychisq 256
log10_or_mychisq 256
dtype: int64
count of NULL values AFTER imputation
mutationinformation 0
or_rawI 0
logorI 0
dtype: int64
PASS: OR values imputed, data ready for ML
Total no. of features for aaindex: 123
No. of numerical features: 168
No. of categorical features: 7
index: 0
ind: 1
Mask count check: True
index: 1
ind: 2
Mask count check: True
Original Data
Counter({0: 7, 1: 1}) Data dim: (8, 175)
-------------------------------------------------------------
Successfully split data: ORIGINAL training
actual values: training set
imputed values: blind test set
Train data size: (8, 175)
Test data size: (263, 175)
y_train numbers: Counter({0: 7, 1: 1})
y_train ratio: 7.0
y_test_numbers: Counter({0: 262, 1: 1})
y_test ratio: 262.0
-------------------------------------------------------------
Simple Random OverSampling
Counter({0: 7, 1: 7})
(14, 175)
Simple Random UnderSampling
Counter({0: 1, 1: 1})
(2, 175)
Simple Combined Over and UnderSampling
Counter({0: 7, 1: 7})
(14, 175)
Traceback (most recent call last):
File "/home/tanu/git/LSHTM_analysis/scripts/ml/./alr_orig.py", line 19, in <module>
setvars(gene,drug)
File "/home/tanu/git/LSHTM_analysis/scripts/ml/ml_data_orig.py", line 701, in setvars
X_smnc, y_smnc = sm_nc.fit_resample(X, y)
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/imblearn/base.py", line 83, in fit_resample
output = self._fit_resample(X, y)
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/imblearn/over_sampling/_smote/base.py", line 533, in _fit_resample
X_resampled, y_resampled = super()._fit_resample(X_encoded, y)
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/imblearn/over_sampling/_smote/base.py", line 324, in _fit_resample
nns = self.nn_k_.kneighbors(X_class, return_distance=False)[:, 1:]
File "/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/neighbors/_base.py", line 749, in kneighbors
raise ValueError(
ValueError: Expected n_neighbors <= n_samples, but n_samples = 1, n_neighbors = 6