LSHTM_analysis/scripts/plotting/basic_barplots_PS.R

190 lines
5.4 KiB
R
Executable file

#!/usr/bin/env Rscript
#########################################################
# TASK: producing barplots
# basic barplots with count of mutations
# basic barplots with frequency of count of mutations
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#source("Header_TT.R")
library(ggplot2)
library(data.table)
library(dplyr)
source("plotting_data.R")
# should return the following dfs, directories and variables
# my_df
# my_df_u
# my_df_u_lig
# dup_muts
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nLength of upos:", length(upos)
, "\nAngstrom symbol:", angstroms_symbol))
# clear excess variable
rm(my_df, upos, dup_muts, my_df_u_lig)
#=======================================================================
#=======
# output
#=======
# plot 1
basic_bp_duet = "basic_barplot_PS.svg"
plot_basic_bp_duet = paste0(plotdir,"/", basic_bp_duet)
# plot 2
pos_count_duet = "position_count_PS.svg"
plot_pos_count_duet = paste0(plotdir, "/", pos_count_duet)
#=======================================================================
#================
# Data for plots
#================
# REASSIGNMENT as necessary
df = my_df_u
# sanity checks
str(df)
#=======================================================================
#****************
# Plot 1:Count of stabilising and destabilsing muts
#****************
svg(plot_basic_bp_duet)
print(paste0("plot1 filename:", basic_bp_duet))
my_ats = 25 # axis text size
my_als = 22 # axis label size
theme_set(theme_grey())
#--------------
# start plot 1
#--------------
g = ggplot(df, aes(x = duet_outcome))
OutPlot_count = g + geom_bar(aes(fill = duet_outcome)
, show.legend = TRUE) +
geom_label(stat = "count"
, aes(label = ..count..)
, color = "black"
, show.legend = FALSE
, size = 10) +
theme(axis.text.x = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_text(size=my_als)
, axis.text.y = element_text(size = my_ats)
, legend.position = c(0.73,0.8)
, legend.text = element_text(size=my_als-2)
, legend.title = element_text(size=my_als)
, plot.title = element_blank()) +
labs(title = ""
, y = "Number of SNPs"
#, fill="DUET Outcome"
) +
scale_fill_discrete(name = "DUET Outcome"
, labels = c("Destabilising", "Stabilising"))
print(OutPlot_count)
dev.off()
table(df$duet_outcome)
#=======================================================================
#****************
# Plot 2: frequency of positions
#****************
df_ncols = ncol(df)
df_nrows = nrow(df)
cat(paste0("original df dimensions:"
, "\nNo. of rows:", df_nrows
, "\nNo. of cols:", df_ncols
, "\nNow adding column: frequency of mutational positions"))
#setDT(df)[, .(pos_count := .N), by = .(position)]
setDT(df)[, pos_count := .N, by = .(position)]
rm(df_nrows, df_ncols)
df_nrows = nrow(df)
df_ncols = ncol(df)
cat(paste0("revised df dimensions:"
, "\nNo. of rows:", df_nrows
, "\nNo. of cols:", df_ncols))
# this is cummulative
table(df$pos_count)
# use group by on this
snpsBYpos_df <- df %>%
group_by(position) %>%
summarize(snpsBYpos = mean(pos_count))
table(snpsBYpos_df$snpsBYpos)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME, get this mutation_info, perhaps useful!
foo = select(df, mutationinformation
, wild_pos
, wild_type
, mutant_type
#, mutation_info # comes from meta data, notused yet
, position
, pos_count)
#write.csv(foo, "/pos_count_freq.csv")
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#--------------
# start plot 2
#--------------
svg(plot_pos_count_duet)
print(paste0("plot filename:", plot_pos_count_duet))
my_ats = 25 # axis text size
my_als = 22 # axis label size
# to make x axis display all positions
# not sure if to use with sort or directly
my_x = sort(unique(snpsBYpos_df$snpsBYpos))
g = ggplot(snpsBYpos_df, aes(x = snpsBYpos))
OutPlot_pos_count = g + geom_bar(aes (alpha = 0.5)
, show.legend = FALSE) +
scale_x_continuous(breaks = unique(snpsBYpos_df$snpsBYpos)) +
#scale_x_continuous(breaks = my_x) +
geom_label(stat = "count", aes(label = ..count..)
, color = "black"
, size = 10) +
theme(axis.text.x = element_text(size = my_ats
, angle = 0)
, axis.text.y = element_text(size = my_ats
, angle = 0
, hjust = 1)
, axis.title.x = element_text(size = my_als)
, axis.title.y = element_text(size = my_als)
, plot.title = element_blank()) +
labs(x = "Number of SNPs"
, y = "Number of Sites")
print(OutPlot_pos_count)
dev.off()
########################################################################
# end of PS barplots
########################################################################