191 lines
No EOL
6.3 KiB
R
191 lines
No EOL
6.3 KiB
R
library(tidyverse)
|
|
library("ggforce")
|
|
library(gginference)
|
|
library(ggpubr)
|
|
library(svglite)
|
|
|
|
# for testing only
|
|
gene="pncA"
|
|
drug="pyrazinamide"
|
|
|
|
lineage_plot=function(gene,drug){
|
|
lineage_filename=paste0(tolower(gene),"_merged_df2.csv")
|
|
lineage_data_path=paste0("~/git/Data/", drug, "/output") # NARSTY
|
|
full_file_path = paste0(lineage_data_path,"/",lineage_filename)
|
|
print(paste0("Loading: ",full_file_path))
|
|
df = read.csv(full_file_path)
|
|
#df2 = read.csv("/home/tanu/git/Data/pyrazinamide/output/pnca_merged_df3.csv")
|
|
|
|
foo = as.data.frame(colnames(df))
|
|
|
|
cols_to_subset = c('mutationinformation'
|
|
, 'snp_frequency'
|
|
, 'pos_count'
|
|
, 'position'
|
|
, 'lineage'
|
|
, 'lineage_multimode'
|
|
, 'dst'
|
|
, 'dst_multimode'
|
|
#, 'dst_multimode_all'
|
|
, 'dst_mode')
|
|
|
|
my_df = df[ ,cols_to_subset]
|
|
#df2 = df2[ ,cols_to_subset]
|
|
|
|
# Now we need to make a column that fill na in dst with value of dst_mode
|
|
my_df$dst2 = ifelse(is.na(my_df$dst), my_df$dst_mode, my_df$dst)
|
|
|
|
#%% create sensitivity column ~ dst_mode
|
|
my_df$sensitivity = ifelse(my_df$dst2 == 1, "R", "S")
|
|
table(my_df$dst2)
|
|
if ( table(my_df$sensitivity)[2] == table(my_df$dst2)[1] && table(my_df$sensitivity)[1] == table(my_df$dst2)[2] ){
|
|
cat("\nProceeding with lineage resistance plots")
|
|
}else{
|
|
stop("FAIL: could not verify dst2 and sensitivity numbers")
|
|
}
|
|
|
|
#%%
|
|
# select only L1-L4 and LBOV
|
|
sel_lineages1 = c("LBOV", "")
|
|
my_df2 = my_df[!my_df$lineage%in%sel_lineages1,]
|
|
table(my_df2$lineage)
|
|
|
|
sel_lineages2 = c("L1", "L2", "L3", "L4")
|
|
my_df2 = my_df2[my_df2$lineage%in%sel_lineages2,]
|
|
table(my_df2$lineage)
|
|
|
|
sum(table(my_df2$lineage)) == nrow(my_df2)
|
|
table(my_df2$lineage)
|
|
|
|
#%% get only muts which belong to > 1 lineage and have different sensitivity classifications
|
|
muts = unique(my_df2$mutationinformation)
|
|
|
|
# step1 : get muts with more than one lineage
|
|
lin_muts = NULL
|
|
for (i in muts) {
|
|
print (i)
|
|
s_mut = my_df2[my_df2$mutationinformation == i,]
|
|
s_tab = table(s_mut$lineage, s_mut$sensitivity)
|
|
#print(s_tab)
|
|
if (dim(s_tab)[1] > 1 && dim(s_tab)[2] > 1){
|
|
lin_muts = c(lin_muts, i)
|
|
}
|
|
}
|
|
cat("\nGot:", length(lin_muts), "mutations belonging to >1 lineage with differing drug sensitivities")
|
|
|
|
# step 2: subset these muts for plotting
|
|
plot_df = my_df2[my_df2$mutationinformation%in%lin_muts,]
|
|
|
|
cat("\nnrow of plot_df:", nrow(plot_df))
|
|
|
|
# step 3: Add p-value
|
|
plot_df$pval = NULL
|
|
for (i in lin_muts) {
|
|
#print (i)
|
|
s_mut = plot_df[plot_df$mutationinformation == i,]
|
|
s_tab = table(s_mut$lineage, s_mut$sensitivity)
|
|
ft_pvalue_i = fisher.test(s_tab)$p.value
|
|
plot_df$pval[plot_df$mutationinformation == i] <- ft_pvalue_i
|
|
}
|
|
plot_df$pvalR = round(plot_df$pval, 3)
|
|
|
|
plot_df$pvalRF = ifelse(plot_df$pvalR == 0.05, paste0("p=",plot_df$pvalR, "."), plot_df$pvalR )
|
|
plot_df$pvalRF = ifelse(plot_df$pvalR <= 0.05, paste0("p=",plot_df$pvalR, "*"), plot_df$pvalRF )
|
|
plot_df$pvalRF = ifelse(plot_df$pvalR <= 0.01, paste0("p=",plot_df$pvalR, "**"), plot_df$pvalRF )
|
|
plot_df$pvalRF = ifelse(plot_df$pvalR == 0, 'p<0.001, ***', plot_df$pvalRF)
|
|
plot_df$pvalRF = ifelse(plot_df$pvalR > 0.05, paste0("p=",plot_df$pvalR), plot_df$pvalRF)
|
|
|
|
# format p value
|
|
lin_muts_tb = plot_df %>%
|
|
group_by(mutationinformation) %>%
|
|
count(lineage) %>%
|
|
mutate(ypos_label = max(n))
|
|
|
|
head(lin_muts_tb); class(lin_muts_tb)
|
|
lin_muts_df = as.data.frame(lin_muts_tb)
|
|
class(lin_muts_df)
|
|
|
|
intersect(names(plot_df), names(lin_muts_df))
|
|
|
|
select_cols = c("mutationinformation", "ypos_label")
|
|
lin_muts_df2 = lin_muts_df[, select_cols]
|
|
names(lin_muts_df2) ; head(lin_muts_df2)
|
|
|
|
# remove duplicates before merging
|
|
lin_muts_df2U = lin_muts_df2[!duplicated(lin_muts_df2),]
|
|
class(lin_muts_df2); class(plot_df); class(lin_muts_df2U)
|
|
|
|
lin_muts_dfM = merge(plot_df, lin_muts_df2U, by = "mutationinformation", all.y = T)
|
|
|
|
if (nrow(lin_muts_dfM) == nrow(plot_df) ){
|
|
cat("\nPASS: plot_df now has ypos for label"
|
|
, "\nGenerating plot_df2 with sensitivity as factor\n")
|
|
str(lin_muts_dfM)
|
|
lin_muts_dfM$sensitivity = as.factor(lin_muts_dfM$sensitivity)
|
|
plot_df2 = lin_muts_dfM
|
|
|
|
}else{
|
|
stop("\nSomething went wrong. ypos_label could not be generated")
|
|
}
|
|
|
|
|
|
# Do plots
|
|
plot_pages = round(length(lin_muts)/25)
|
|
p_title = gene
|
|
res = 144 # SVG dots-per-inch
|
|
|
|
sapply(1:plot_pages, function(page){
|
|
print(paste0("Plotting page:", page))
|
|
svglite(paste0("/tmp/",drug,"-",page,".svg"), width=2048/res, height=1534/res) # old-school square 4:3 CRT shape 1.3:1
|
|
print(
|
|
ggplot(plot_df2, aes(x = lineage
|
|
, fill = sensitivity)) +
|
|
geom_bar(stat = 'count') +
|
|
facet_wrap_paginate(~mutationinformation
|
|
, scales = 'free_y'
|
|
, ncol = 5
|
|
, nrow = 5
|
|
, page = page) +
|
|
theme(legend.position = "top"
|
|
, plot.title = element_text(hjust = 0.5, size=20)
|
|
, strip.text = element_text(size=14)
|
|
, axis.text.x = element_text(size=14)
|
|
, axis.text.y = element_text(size=14)
|
|
, axis.title.y = element_text(size=14)
|
|
, legend.title = element_blank()
|
|
, axis.title.x = element_blank()
|
|
)+
|
|
labs(title = paste0(p_title, ": sensitivity by lineage")
|
|
, y = 'Sample Count'
|
|
) +
|
|
#geom_text(aes(label = p.value, x = 0.5, y = 5))
|
|
geom_blank(aes(y = ypos_label+1.25)) +
|
|
geom_label(aes(label = pvalRF, x = 2.5, ypos_label+0.75), fill="white")
|
|
)
|
|
dev.off()
|
|
}
|
|
)
|
|
}
|
|
|
|
# hardcoded list of drugs
|
|
drugs = c(#"ethambutol",
|
|
#"isoniazid",
|
|
"pyrazinamide",
|
|
"rifampicin",
|
|
"streptomycin",
|
|
"cycloserine")
|
|
genes = c(#"embB",
|
|
#"katG",
|
|
"pncA",
|
|
"rpoB",
|
|
"gid",
|
|
"alr")
|
|
combo = data.frame(drugs, genes)
|
|
|
|
#sapply(combo$drugs, function(x){print(c(x,combo[drugs==x,"genes"]))})
|
|
|
|
# generate graphs for all drug/gene combinations in "combo"
|
|
sapply(combo$drugs, function(drug){
|
|
gene=combo[drugs==drug,"genes"]
|
|
lineage_plot(gene,drug)
|
|
}) |