662 lines
20 KiB
R
662 lines
20 KiB
R
#########################################################
|
|
# TASK: To calculate Allele Frequency and
|
|
# Odds Ratio from master data
|
|
# and add the calculated params to meta_data extracted from
|
|
# data_extraction.py
|
|
#########################################################
|
|
getwd()
|
|
setwd('~/git/LSHTM_analysis/scripts')
|
|
getwd()
|
|
|
|
options(scipen = 999) #disabling scientific notation in R.
|
|
#options(scipen = 4)
|
|
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#===========
|
|
# input
|
|
#===========
|
|
# infile1: Raw data
|
|
#indir = 'git/Data/pyrazinamide/input/original'
|
|
indir = paste0('~/git/Data')
|
|
in_filename = 'original_tanushree_data_v2.csv'
|
|
#in_filename = 'mtb_gwas_v3.csv'
|
|
infile = paste0(indir, '/', in_filename)
|
|
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
|
|
|
# infile2: gene associated meta data file to extract valid snps and add calcs to.
|
|
# This is outfile3 from data_extraction.py
|
|
indir_metadata = paste0('~/git/Data', '/', drug, '/', 'output')
|
|
in_filename_metadata = 'pnca_metadata.csv'
|
|
infile_metadata = paste0(indir_metadata, '/', in_filename_metadata)
|
|
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
# outdir = 'git/Data/pyrazinamide/output'
|
|
outdir = paste0('~/git/Data', '/', drug, '/', 'output')
|
|
#out_filename = paste0(tolower(gene), '_meta_data_with_AF_OR.csv')
|
|
out_filename = paste0(tolower(gene), '_AF_OR.csv')
|
|
outfile = paste0(outdir, '/', out_filename)
|
|
cat(paste0('Output file with full path:', outfile))
|
|
#%% end of variable assignment for input and output files
|
|
|
|
#########################################################
|
|
# 1: Read master/raw data stored in Data/
|
|
#########################################################
|
|
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
|
|
|
# building cols to extract
|
|
dr_muts_col = paste0('dr_mutations_', drug)
|
|
other_muts_col = paste0('other_mutations_', drug)
|
|
|
|
cat('Extracting columns based on variables:\n'
|
|
, drug
|
|
, '\n'
|
|
, dr_muts_col
|
|
, '\n'
|
|
, other_muts_col
|
|
, '\n===============================================================')
|
|
|
|
raw_data = raw_data_all[,c("id"
|
|
, drug
|
|
, dr_muts_col
|
|
, other_muts_col)]
|
|
rm(raw_data_all)
|
|
|
|
rm(indir, in_filename, infile)
|
|
|
|
#===========
|
|
# 1a: exclude na
|
|
#===========
|
|
raw_data = raw_data[!is.na(raw_data[[drug]]),]
|
|
|
|
total_samples = length(unique(raw_data$id))
|
|
cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
|
|
|
|
# sanity check: should be true
|
|
is.numeric(total_samples)
|
|
|
|
#===========
|
|
# 1b: combine the two mutation columns
|
|
#===========
|
|
all_muts_colname = paste0('all_mutations_', drug)
|
|
#raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide, raw_data$other_mutations_pyrazinamide)
|
|
raw_data[[all_muts_colname]] = paste(raw_data[[dr_muts_col]], raw_data[[other_muts_col]])
|
|
head(raw_data[[all_muts_colname]])
|
|
|
|
#===========
|
|
# 1c: create yet another column that contains all the mutations but in lower case
|
|
#===========
|
|
head(raw_data[[all_muts_colname]])
|
|
raw_data$all_muts_gene = tolower(raw_data[[all_muts_colname]])
|
|
head(raw_data$all_muts_gene)
|
|
|
|
# sanity checks
|
|
#table(grepl("gene_p",raw_data$all_muts_gene))
|
|
cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase'))
|
|
gene_match = tolower(gene_match)
|
|
|
|
table(grepl(gene_match,raw_data$all_muts_gene))
|
|
|
|
# sanity check: should be TRUE
|
|
#sum(table(grepl("gene_p",raw_data$all_muts_gene))) == total_samples
|
|
# sanity check
|
|
if(sum(table(grepl(gene_match, raw_data$all_muts_gene))) == total_samples){
|
|
cat('PASS: Total no. of samples match')
|
|
} else{
|
|
cat('FAIL: No. of samples mismatch')
|
|
}
|
|
|
|
#########################################################
|
|
# 2: Read valid snps for which OR
|
|
# can be calculated
|
|
#########################################################
|
|
cat(paste0('Reading metadata infile:', infile_metadata))
|
|
|
|
gene_metadata = read.csv(infile_metadata
|
|
#, file.choose()
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
|
|
# clear variables
|
|
rm(in_filename_metadata, infile_metadata)
|
|
|
|
# count na in pyrazinamide column
|
|
tot_pza_na = sum(is.na(gene_metadata$pyrazinamide))
|
|
expected_rows = nrow(gene_metadata) - tot_pza_na
|
|
|
|
# drop na from the pyrazinamide colum
|
|
gene_snps_or = gene_metadata[!is.na(gene_metadata[[drug]]),]
|
|
|
|
# sanity check
|
|
if(nrow(gene_snps_or) == expected_rows){
|
|
cat('PASS: no. of rows match with expected_rows')
|
|
} else{
|
|
cat('FAIL: nrows mismatch.')
|
|
}
|
|
|
|
# extract unique snps to iterate over for AF and OR calcs
|
|
gene_snps_unique = unique(gene_snps_or$mutation)
|
|
|
|
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(gene_snps_unique)))
|
|
|
|
#=====================================
|
|
#OR calcs using the following 4
|
|
#1) chisq.test
|
|
#2) fisher
|
|
#3) modified chisq.test
|
|
#4) logistic
|
|
#5) adjusted logistic?
|
|
#6) kinship (separate script)
|
|
|
|
#======================================
|
|
# TEST FOR ONE
|
|
i = "pnca_p.ala134gly" # has a NA, should NOT exist
|
|
table(grepl(i,raw_data$all_muts_gene))
|
|
|
|
i = "pnca_p.trp68gly"
|
|
table(grepl(i,raw_data$all_muts_gene))
|
|
|
|
i = "pnca_p.his51asp"
|
|
table(grepl(i,raw_data$all_muts_gene))
|
|
|
|
# IV
|
|
mut = grepl(i,raw_data$all_muts_gene)
|
|
|
|
# DV
|
|
dst = raw_data[[drug]] #or raw_data[,drug]
|
|
|
|
table(mut, dst)
|
|
|
|
#===============================================
|
|
# calculating OR
|
|
|
|
#1) chisq : noy accurate for low counts
|
|
chisq.test(table(mut,dst))
|
|
chisq.test(table(mut,dst))$p.value
|
|
chisq.test(table(mut,dst))$statistic
|
|
|
|
t = chisq.test(table(mut,dst))$statistic; print(t)
|
|
names(t)
|
|
# remove suffix
|
|
#names(t2) = gsub(".X-squared", "", names(t))
|
|
|
|
#2) modified chisq OR: custom function
|
|
#x = as.numeric(mut)
|
|
#y = dst
|
|
my_chisq_or = function(x,y){
|
|
tab = as.matrix(table(x,y))
|
|
a = tab[2,2]
|
|
if (a==0){ a<-0.5}
|
|
b = tab[2,1]
|
|
if (b==0){ b<-0.5}
|
|
c = tab[1,2]
|
|
if (c==0){ c<-0.5}
|
|
d = tab[1,1]
|
|
if (d==0){ d<-0.5}
|
|
(a/b)/(c/d)
|
|
}
|
|
my_chisq_or(mut, dst)
|
|
|
|
#3) fisher
|
|
fisher.test(table(mut, dst))
|
|
|
|
or_fisher = fisher.test(table(mut, dst))$estimate; print(or_fisher); cat(names(or_fisher))
|
|
pval_fisher = fisher.test(table(mut, dst))$p.value; print(pval_fisher) # the same one to be used for custom chisq_or
|
|
ci_lb_fisher = fisher.test(table(mut, dst))$conf.int[1]; print(ci_lb_fisher)
|
|
ci_ub_fisher = fisher.test(table(mut, dst))$conf.int[2]; print(ci_ub_fisher)
|
|
|
|
#4) logistic
|
|
summary(model<-glm(dst ~ mut
|
|
, family = binomial
|
|
#, control = glm.control(maxit = 1)
|
|
#, options(warn = 1)
|
|
))
|
|
or_logistic = exp(summary(model)$coefficients[2,1]); print(or_logistic)
|
|
pval_logistic = summary(model)$coefficients[2,4]; print(pval_logistic)
|
|
|
|
|
|
#5) logistic adjusted: sample id (# identical results as unadjusted)
|
|
#c = raw_data$id[grepl(i,raw_data$all_muts_gene)]
|
|
#sid = grepl(paste(c,collapse="|"), raw_data$id) # else warning that pattern length > 1
|
|
#table(sid)
|
|
#table(mut, dst, sid)
|
|
|
|
#summary(model2<-glm(dst ~ mut + sid
|
|
# , family = binomial
|
|
##, control = glm.control(maxit = 1)
|
|
##, options(warn = 1)
|
|
# ))
|
|
#or_logistic2 = exp(summary(model2)$coefficients[2,1]); print(or_logistic2)
|
|
#pval_logistic2 = summary(model2)$coefficients[2,4]; print(pval_logistic2)
|
|
|
|
#===============================================
|
|
|
|
######################
|
|
# AF and OR for all muts: sapply
|
|
######################
|
|
print(table(dst)); print(table(mut)) # must exist
|
|
#dst = raw_data[[drug]] #or raw_data[,drug]
|
|
|
|
# af
|
|
afs = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
mean(mut)
|
|
})
|
|
|
|
#afs
|
|
head(afs)
|
|
|
|
#1) chi square: original
|
|
statistic_chi = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
chisq.test(mut,dst)$statistic
|
|
|
|
})
|
|
|
|
# statistic_chi: has suffix added of '.X-squared'
|
|
stat_chi = statistic_chi
|
|
|
|
# remove suffix
|
|
names(stat_chi) = gsub(".X-squared", "", names(statistic_chi))
|
|
|
|
if (names(stat_chi)!= names(statistic_chi) && stat_chi == statistic_chi){
|
|
cat('Sanity check passed: suffix removed correctly\n\n'
|
|
, 'names with suffix:', head(names(statistic_chi)), '\n\n'
|
|
, 'names without suffix:', head(names(stat_chi)), '\n\n'
|
|
, 'values in var with suffix:', head(statistic_chi),'\n'
|
|
, 'values in var without suffix:', head(stat_chi)
|
|
)
|
|
}else{
|
|
print('FAIL: suffix removal unsuccessful! Please Debug')
|
|
}
|
|
|
|
## pval
|
|
pvals_chi = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
chisq.test(mut,dst)$p.value
|
|
})
|
|
|
|
#pvals_chi
|
|
head(pvals_chi)
|
|
|
|
#2) chi square: custom
|
|
ors_chi_cus = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
my_chisq_or(mut,dst)
|
|
})
|
|
|
|
#ors_chi_cus
|
|
head(ors_chi_cus)
|
|
|
|
## pval:fisher (use the same one for custom chi sqaure)
|
|
pvals_fisher = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
fisher.test(mut,dst)$p.value
|
|
})
|
|
|
|
#pvals_fisher
|
|
head(pvals_fisher)
|
|
|
|
#3) fisher
|
|
odds_ratio_fisher = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
fisher.test(mut,dst)$estimate;
|
|
})
|
|
|
|
#ors_fisher
|
|
head(odds_ratio_fisher)
|
|
|
|
# statistic_chi: has suffix added of '.X-squared'
|
|
head(odds_ratio_fisher)
|
|
|
|
# remove suffix
|
|
ors_fisher = odds_ratio_fisher
|
|
names(ors_fisher) = gsub(".odds ratio", "", names(odds_ratio_fisher))
|
|
|
|
if (names(ors_fisher)!= names(odds_ratio_fisher) && ors_fisher == odds_ratio_fisher){
|
|
cat('Sanity check passed: suffix removed correctly\n\n'
|
|
, 'names with suffix:', head(names(odds_ratio_fisher)), '\n\n'
|
|
, 'names without suffix:', head(names(ors_fisher)), '\n\n'
|
|
, 'values in var with suffix:', head(odds_ratio_fisher),'\n'
|
|
, 'values in var without suffix:', head(ors_fisher)
|
|
)
|
|
}else{
|
|
print('FAIL: suffix removal unsuccessful! Please Debug')
|
|
}
|
|
|
|
|
|
## fisher ci (lower)
|
|
ci_lb_fisher = sapply(gene_snps_unique, function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
low_ci = fisher.test(table(mut, dst))$conf.int[1]
|
|
|
|
})
|
|
|
|
#ci_lb_fisher
|
|
head(ci_lb_fisher)
|
|
|
|
## fisher ci (upper)
|
|
ci_ub_fisher = sapply(gene_snps_unique, function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
up_ci = fisher.test(table(mut, dst))$conf.int[2]
|
|
|
|
})
|
|
|
|
#ci_ub_fisher
|
|
head(ci_ub_fisher)
|
|
|
|
#4) logistic or
|
|
ors_logistic = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
#print(table(dst, mut))
|
|
model<-glm(dst ~ mut , family = binomial)
|
|
or_logistic = exp(summary(model)$coefficients[2,1])
|
|
#pval_logistic = summary(model)$coefficients[2,4]
|
|
})
|
|
|
|
#ors_logistic
|
|
head(ors_logistic)
|
|
|
|
## logistic p-value
|
|
pvals_logistic = sapply(gene_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_gene)
|
|
#print(table(dst, mut))
|
|
model<-glm(dst ~ mut , family = binomial)
|
|
#or_logistic = exp(summary(model)$coefficients[2,1])
|
|
pval_logistic = summary(model)$coefficients[2,4]
|
|
})
|
|
|
|
#pvals_logistic
|
|
head(pvals_logistic)
|
|
|
|
#=============================================
|
|
|
|
# check ..(hmmm) perhaps separate script)
|
|
afs['pnca_p.trp68gly']
|
|
afs['pnca_p.gln10pro']
|
|
afs['pnca_p.leu4ser']
|
|
|
|
plot(density(log(ors_logistic)))
|
|
plot(-log10(pvals))
|
|
hist(log(ors)
|
|
, breaks = 100)
|
|
|
|
# sanity check: if names are equal (just for 3 vars)
|
|
all(sapply(list(names(afs)
|
|
, names(pvals_chi)
|
|
, names(statistic_chi) # should return False
|
|
, names(ors_chi_cus)), function (x) x == names(ors_logistic)))
|
|
|
|
compare(names(afs)
|
|
, names(pvals_chi)
|
|
, names(statistic_chi) #TEST: should return False, but DOESN'T
|
|
, names(ors_chi_cus)
|
|
, names(stat_chi))$result
|
|
|
|
#=============== Now with all vars
|
|
|
|
# sanity check: names for all vars
|
|
#c = compare( names(afs)
|
|
# , names(stat_chi)
|
|
# , names(statistic_chi) #TEST: should return False, but DOESN'T
|
|
# , names(pvals_chi)
|
|
# , names(ors_chi_cus)
|
|
# , names(pvals_fisher)
|
|
# , names(ors_fisher)
|
|
# , names(ci_lb_fisher)
|
|
# , names(ci_ub_fisher)
|
|
# , names(ors_logistic)
|
|
# , names(pvals_logistic))$result; c
|
|
|
|
if (all( sapply( list(names(afs)
|
|
, names(stat_chi)
|
|
#, names(statistic_chi) # TEST should return FALSE if included
|
|
, names(pvals_chi)
|
|
, names(ors_chi_cus)
|
|
, names(pvals_fisher)
|
|
, names(ors_fisher)
|
|
, names(ci_lb_fisher)
|
|
, names(ci_ub_fisher)
|
|
, names(pvals_logistic) ), function (x) x == names(ors_logistic)))
|
|
){
|
|
cat('PASS: names match: proceed with combining into a single df')
|
|
} else {
|
|
cat('FAIL: names mismatch')
|
|
}
|
|
|
|
# combine ors, pvals and afs
|
|
cat('Combining calculated params into a df: ors, pvals and afs')
|
|
|
|
comb_AF_and_OR = data.frame(afs
|
|
, stat_chi
|
|
, pvals_chi
|
|
, ors_chi_cus
|
|
, pvals_fisher
|
|
, ors_fisher
|
|
, ci_lb_fisher
|
|
, ci_ub_fisher
|
|
, pvals_logistic
|
|
, ors_logistic)
|
|
|
|
cat('No. of rows in comb_AF_and_OR: ', nrow(comb_AF_and_OR)
|
|
, '\nNo. of cols in comb_AF_and_OR: ', ncol(comb_AF_and_OR))
|
|
|
|
cat('Rownames == mutation: ', head(rownames(comb_AF_and_OR)))
|
|
|
|
# add rownames of comb_AF_and_OR as an extra column 'mutation' to allow merging based on this column
|
|
comb_AF_and_OR$mutation = rownames(comb_AF_and_OR)
|
|
|
|
# sanity check
|
|
if (table(rownames(comb_AF_and_OR) == comb_AF_and_OR$mutation)){
|
|
cat('PASS: rownames and mutaion col values match')
|
|
}else{
|
|
cat('FAIL: rownames and mutation col values mismatch')
|
|
}
|
|
#########################################################
|
|
# write file out: pnca_AF_OR
|
|
#########################################################
|
|
cat(paste0('writing output file: '
|
|
, '\nFilename: ', outfile))
|
|
|
|
write.csv(comb_AF_and_OR, outfile
|
|
, row.names = F)
|
|
|
|
cat(paste0('Finished writing:'
|
|
, out_filename
|
|
, '\nNo. of rows: ', nrow(comb_AF_and_OR)
|
|
, '\nNo. of cols: ', ncol(comb_AF_and_OR)))
|
|
#************************************************
|
|
cat('======================================================================')
|
|
rm(out_filename)
|
|
cat('End of script: calculated AF, OR, pvalues and saved file')
|
|
|
|
#########################################################
|
|
# 3: Merge meta data file + calculated num params
|
|
#########################################################
|
|
df1 = gene_metadata
|
|
df2 = comb_AF_and_OR
|
|
|
|
cat('checking commom col of the two dfs before merging:'
|
|
,'\ndf1:', head(df1$mutation)
|
|
, '\ndf2:', head(df2$mutation))
|
|
|
|
cat(paste0('merging two dfs: '
|
|
,'\ndf1 (big df i.e. meta data) nrows: ', nrow(df1)
|
|
,'\ndf2 (small df i.e af, or, pval) nrows: ', nrow(df2)
|
|
,'\nexpected rows in merged df: ', nrow(df1)
|
|
,'\nexpected cols in merged_df: ', (ncol(df1) + ncol(df2) - 1)))
|
|
|
|
merged_df = merge(df1 # big file
|
|
, df2 # small (afor file)
|
|
, by = "mutation"
|
|
, all.x = T) # because you want all the entries of the meta data
|
|
|
|
# sanity check
|
|
if(ncol(merged_df) == (ncol(df1) + ncol(df2) - 1)){
|
|
cat(paste0('PASS: no. of cols is as expected: ', ncol(merged_df)))
|
|
} else{
|
|
cat('FAIL: no.of cols mistmatch')
|
|
}
|
|
|
|
# quick check
|
|
i = "pnca_p.ala134gly" # has all NAs in pyrazinamide, should be NA in ors, etc.
|
|
merged_df[merged_df$mutation == i,]
|
|
|
|
# count na in each column
|
|
na_count = sapply(merged_df, function(y) sum(length(which(is.na(y))))); na_count
|
|
|
|
# check last three cols: should be NA
|
|
if ( identical(na_count[[length(na_count)]], na_count[[length(na_count)-1]], na_count[[length(na_count)-2]])){
|
|
cat('PASS: No. of NAs for OR, AF and Pvals are equal as expected',
|
|
'\nNo. of NA: ', na_count[[length(na_count)]])
|
|
} else {
|
|
cat('FAIL: No. of NAs for OR, AF and Pvals mismatch')
|
|
}
|
|
|
|
# reassign custom colnames
|
|
#cat('Assigning custom colnames for the calculated params...')
|
|
#colnames(merged_df)[colnames(merged_df)== "ors"] <- "OR"
|
|
#colnames(merged_df)[colnames(merged_df)== "pvals"] <- "pvalue"
|
|
#colnames(merged_df)[colnames(merged_df)== "afs"] <- "AF"
|
|
|
|
colnames(merged_df)
|
|
|
|
# add 3 more cols: log OR, neglog pvalue and AF_percent cols
|
|
merged_df$logor = log(merged_df$OR)
|
|
is.numeric(merged_df$logor)
|
|
|
|
merged_df$neglog10pvalue = -log10(merged_df$pvalue)
|
|
is.numeric(merged_df$neglog10pvalue)
|
|
|
|
merged_df$AF_percent = merged_df$AF*100
|
|
is.numeric(merged_df$AF_percent)
|
|
|
|
# check AFs
|
|
#i = 'pnca_p.trp68gly'
|
|
i = 'pnca_p.gln10pro'
|
|
#i = 'pnca_p.leu4ser'
|
|
merged_df[merged_df$mutation == i,]
|
|
|
|
# FIXME: harcoding (beware!), NOT FATAL though!
|
|
ncol_added = 3
|
|
|
|
cat(paste0('Added', ' ', ncol_added, ' more cols to merged_df:'
|
|
, '\ncols added: logor, neglog10pvalue and AF_percent:'
|
|
, '\nno. of cols in merged_df now: ', ncol(merged_df)))
|
|
|
|
#%% write file out: pnca_meta_data_with_AF_OR
|
|
#*********************************************
|
|
cat(paste0('writing output file: '
|
|
, '\nFilename: ', out_filename
|
|
, '\nPath:', outdir))
|
|
|
|
write.csv(merged_df, outfile
|
|
, row.names = F)
|
|
|
|
cat(paste0('Finished writing:'
|
|
, out_filename
|
|
, '\nNo. of rows: ', nrow(merged_df)
|
|
, '\nNo. of cols: ', ncol(merged_df)))
|
|
#************************************************
|
|
cat('======================================================================')
|
|
rm(out_filename)
|
|
cat('End of script: calculated AF, OR, pvalues and saved file')
|
|
# End of script
|
|
#%%
|
|
# sanity check: Count NA in these four cols.
|
|
# However these need to be numeric else these
|
|
# will be misleading when counting NAs (i.e retrun 0)
|
|
#is.numeric(meta_with_afor$OR)
|
|
na_var = c('AF', 'OR', 'pvalue', 'logor', 'neglog10pvalue')
|
|
|
|
# loop through these vars and check if these are numeric.
|
|
# if not, then convert to numeric
|
|
check_all = NULL
|
|
|
|
for (i in na_var){
|
|
# cat(i)
|
|
check0 = is.numeric(meta_with_afor[,i])
|
|
if (check0) {
|
|
check_all = c(check0, check_all)
|
|
cat('These are all numeric cols')
|
|
} else{
|
|
cat('First converting to numeric')
|
|
check0 = as.numeric(meta_with_afor[,i])
|
|
check_all = c(check0, check_all)
|
|
}
|
|
}
|
|
|
|
# count na now that the respective cols are numeric
|
|
na_count = sapply(meta_with_afor, function(y) sum(length(which(is.na(y))))); na_count
|
|
str(na_count)
|
|
|
|
# extract how many NAs:
|
|
# should be all TRUE
|
|
# should be a single number since
|
|
# all the cols should have 'equal' and 'same' no. of NAs
|
|
# compare if the No of 'NA' are the same for all these cols
|
|
na_len = NULL
|
|
for (i in na_var){
|
|
temp = na_count[[i]]
|
|
na_len = c(na_len, temp)
|
|
}
|
|
|
|
cat('Checking how many NAs and if these are identical for the selected cols:')
|
|
my_nrows = NULL
|
|
for ( i in 1: (length(na_len)-1) ){
|
|
# cat(compare(na_len[i]), na_len[i+1])
|
|
c = compare(na_len[i], na_len[i+1])
|
|
if ( c$result ) {
|
|
cat('PASS: No. of NAa in selected cols are identical')
|
|
my_nrows = na_len[i] }
|
|
else {
|
|
cat('FAIL: No. of NAa in selected cols mismatch')
|
|
}
|
|
}
|
|
|
|
cat('No. of NAs in each of the selected cols: ', my_nrows)
|
|
|
|
# yet more sanity checks:
|
|
cat('Check whether the ', my_nrows, 'indices are indeed the same')
|
|
|
|
#which(is.na(meta_with_afor$OR))
|
|
|
|
# initialise an empty df with nrows as extracted above
|
|
na_count_df = data.frame(matrix(vector(mode = 'numeric'
|
|
# , length = length(na_var)
|
|
)
|
|
, nrow = my_nrows
|
|
# , ncol = length(na_var)
|
|
))
|
|
|
|
# populate the df with the indices of the cols that are NA
|
|
for (i in na_var){
|
|
cat(i)
|
|
na_i = which(is.na(meta_with_afor[i]))
|
|
na_count_df = cbind(na_count_df, na_i)
|
|
colnames(na_count_df)[which(na_var == i)] <- i
|
|
}
|
|
|
|
# Now compare these indices to ensure these are the same
|
|
check2 = NULL
|
|
for ( i in 1: ( length(na_count_df)-1 ) ) {
|
|
# cat(na_count_df[i] == na_count_df[i+1])
|
|
check_all = identical(na_count_df[[i]], na_count_df[[i+1]])
|
|
check2 = c(check_all, check2)
|
|
if ( all(check2) ) {
|
|
cat('PASS: The indices for AF, OR, etc are all the same\n')
|
|
} else {
|
|
cat ('FAIL: Please check indices which are NA')
|
|
}
|
|
}
|
|
|
|
|
|
|