LSHTM_analysis/scripts/plotting/lineage_dist_dm_om_combined_PS.R

386 lines
12 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: Lineage dist plots: ggridges
# Output: 2 SVGs for PS stability
# 1) all muts
# 2) dr_muts
##########################################################
# Installing and loading required packages
##########################################################
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("Header_TT.R")
library(ggridges)
library(plyr)
source("combining_dfs_plotting.R")
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
cat("cols imported:"
, mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2)
#=======
# output
#=======
lineage_dist_combined_dm_om = "lineage_dist_combined_dm_om_PS.svg"
plot_lineage_dist_combined_dm_om = paste0(plotdir,"/", lineage_dist_combined_dm_om)
lineage_dist_combined_dm_om_L = "lineage_dist_combined_dm_om_PS_labelled.svg"
plot_lineage_dist_combined_dm_om_L = paste0(plotdir,"/", lineage_dist_combined_dm_om_L)
#========================================================================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp
, merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig)
# quick checks
colnames(my_df)
str(my_df)
table(my_df$mutation_info)
#===================
# Data for plots
#===================
table(my_df$lineage); str(my_df$lineage)
# select lineages 1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
#, "lineage5"
#, "lineage6"
#, "lineage7")
# works nicely with facet wrap using labeller, but not otherwise
#my_labels = c('Lineage 1'
# , 'Lineage 2'
# , 'Lineage 3'
# , 'Lineage 4')
# #, 'Lineage 5'
# #, 'Lineage 6'
# #, 'Lineage 7')
#names(my_labels) = c('lineage1'
# , 'lineage2'
# , 'lineage3'
# , 'lineage4')
# #, 'lineage5'
# #, 'lineage6'
# #, 'lineage7')
#==========================
# subset selected lineages
#==========================
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
table(df_lin$lineage)
#{RESULT: Total number of samples for lineage}
sum(table(df_lin$lineage))
#{RESULT: No of samples within lineage}
table(df_lin$lineage)
#{Result: No. of unique mutations the 4 lineages contribute to}
length(unique(df_lin$mutationinformation))
u2 = unique(my_df$mutationinformation)
u = unique(df_lin$mutationinformation)
#{Result:Muts not present within selected lineages}
check = u2[!u2%in%u]; print(check)
# workaround to make labels appear nicely for in otherwise cases
#==================
# lineage: labels
# from "plyr"
#==================
#{Result:No of samples in selected lineages}
table(df_lin$lineage)
df_lin$lineage_labels = mapvalues(df_lin$lineage
, from = c("lineage1","lineage2", "lineage3", "lineage4")
, to = c("Lineage 1", "Lineage 2", "Lineage 3", "Lineage 4"))
table(df_lin$lineage_labels)
table(df_lin$lineage_labels) == table(df_lin$lineage)
#========================
# mutation_info: labels
#========================
#{Result:No of DM and OM muts in selected lineages}
table(df_lin$mutation_info)
df_lin$mutation_info_labels = ifelse(df_lin$mutation_info == dr_muts_col, "DM", "OM")
table(df_lin$mutation_info_labels)
table(df_lin$mutation_info) == table(df_lin$mutation_info_labels)
#========================
# duet_outcome: labels
#========================
#{Result: No. of D and S mutations in selected lineages}
table(df_lin$duet_outcome)
df_lin$duet_outcome_labels = ifelse(df_lin$duet_outcome == "Destabilising", "D", "S")
table(df_lin$duet_outcome_labels)
table(df_lin$duet_outcome) == table(df_lin$duet_outcome_labels)
#=======================
# subset dr muts only
#=======================
#my_df_dr = subset(df_lin, mutation_info == dr_muts_col)
#table(my_df_dr$mutation_info)
#table(my_df_dr$lineage)
#=========================
# subset other muts only
#=========================
#my_df_other = subset(df_lin, mutation_info == other_muts_col)
#table(my_df_other$mutation_info)
#table(my_df_other$lineage)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Distribution plots
#============================
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df <- df_lin
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
n_colours = length(unique(df$duet_scaled))
my_palette <- colorRampPalette(c(mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2))(n = n_colours+1)
#=======================================
# Plot 1: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
# else same as geom_density_ridges)
# x = duet_scaled
# y = duet_outcome
# fill = duet_scaled
# Facet: Lineage
#=======================================
# output individual svg
#plot_lineage_dist_duet_f paste0(plotdir,"/", "lineage_dist_duet_f.svg")
#plot_lineage_dist_duet_f
#svg(plot_lineage_dist_duet_f)
p1 = ggplot(df, aes(x = duet_scaled
, y = duet_outcome))+
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage_labels
# , scales = "free"
# , labeller = labeller(lineage = my_labels)
) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_gradientn(colours = my_palette
, name = "DUET"
#, breaks = c(-1, 0, 1)
#, labels = c(-1,0,1)
#, limits = c(-1,1)
) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
#, axis.text.y = element_blank()
, axis.text.y = element_text(size = my_ats)
, axis.title.x = element_text(size = my_ats)
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-10)
#, legend.title = element_text(size = my_als-6)
, legend.title = element_blank()
, legend.position = c(-0.08, 0.41)
#, legend.direction = "horizontal"
#, legend.position = "left"
)+
labs(x = "DUET")
p1
#p1_with_legend = p1 + guides(fill = guide_colourbar(label = FALSE))
#=======================================
# Plot 2: lineage dist: geom_density_ridges, allows alpha to be set
# x = duet_scaled
# y = lineage_labels
# fill = mutation_info
# NO FACET
#=======================================
# output svg
#plot_lineage_dist_duet_dm_om = paste0(plotdir,"/", "lineage_dist_duet_dm_om.svg")
#plot_lineage_dist_duet_dm_om
#svg(plot_lineage_dist_duet_dm_om)
p2 = ggplot(df, aes(x = duet_scaled
, y = lineage_labels))+
geom_density_ridges(aes(fill = factor(mutation_info_labels))
, scale = 3
, size = 0.3
, alpha = 0.8) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_manual(values = c("#E69F00", "#999999")) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_ats)
, axis.title.x = element_text(size = my_ats)
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-4)
, legend.title = element_text(size = my_als-4)
, legend.position = c(0.8, 0.9)) +
labs(x = "DUET"
, fill = "Mutation class") # legend title
p2
#=======================================
# Plot 3: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
# else same as geom_density_ridges)
# x = duet_scaled
# y = lineage_labels
# fill = duet_scaled
# NO FACET (nf)
#=======================================
# output individual svg
#plot_lineage_dist_duet_nf = paste0(plotdir,"/", "lineage_dist_duet_nf.svg")
#plot_lineage_dist_duet_nf
#svg(plot_lineage_dist_duet_nf)
p3 = ggplot(df, aes(x = duet_scaled
, y = lineage_labels))+
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3 ) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_gradientn(colours = my_palette, name = "DUET") +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = my_ats)
, axis.title.x = element_text(size = my_ats)
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-10)
, legend.title = element_text(size = my_als-3)
, legend.position = c(0.8, 0.8)) +
#, legend.direction = "horizontal")+
#, legend.position = "top")+
labs(x = "DUET")
p3
########################################################################
#==============
# combine plots
#===============
# 1) without labels
plot_lineage_dist_combined_dm_om
svg(plot_lineage_dist_combined_dm_om, width = 12, height = 6)
OutPlot1 = cowplot::plot_grid(p1, p2
, rel_widths = c(0.5/2, 0.5/2))
print(OutPlot1)
dev.off()
# 2) with labels
plot_lineage_dist_combined_dm_om_L
svg(plot_lineage_dist_combined_dm_om_L, width = 12, height = 6)
OutPlot2 = cowplot::plot_grid(p1, p2
#, labels = c("(a)", "(b)")
, labels = "AUTO"
#, label_x = -0.045, label_y = 0.92
#, hjust = -0.7, vjust = -0.5
#, align = "h"
, rel_widths = c(0.5/2, 0.5/2)
, label_size = my_als)
print(OutPlot2)
dev.off()
##############################################################################