386 lines
12 KiB
R
386 lines
12 KiB
R
#!/usr/bin/env Rscript
|
|
#########################################################
|
|
# TASK: Lineage dist plots: ggridges
|
|
|
|
# Output: 2 SVGs for PS stability
|
|
|
|
# 1) all muts
|
|
# 2) dr_muts
|
|
|
|
##########################################################
|
|
# Installing and loading required packages
|
|
##########################################################
|
|
getwd()
|
|
setwd("~/git/LSHTM_analysis/scripts/plotting/")
|
|
getwd()
|
|
|
|
source("Header_TT.R")
|
|
library(ggridges)
|
|
library(plyr)
|
|
source("combining_dfs_plotting.R")
|
|
# PS combined:
|
|
# 1) merged_df2
|
|
# 2) merged_df2_comp
|
|
# 3) merged_df3
|
|
# 4) merged_df3_comp
|
|
|
|
# LIG combined:
|
|
# 5) merged_df2_lig
|
|
# 6) merged_df2_comp_lig
|
|
# 7) merged_df3_lig
|
|
# 8) merged_df3_comp_lig
|
|
|
|
# 9) my_df_u
|
|
# 10) my_df_u_lig
|
|
|
|
cat("Directories imported:"
|
|
, "\n===================="
|
|
, "\ndatadir:", datadir
|
|
, "\nindir:", indir
|
|
, "\noutdir:", outdir
|
|
, "\nplotdir:", plotdir)
|
|
|
|
cat("Variables imported:"
|
|
, "\n====================="
|
|
, "\ndrug:", drug
|
|
, "\ngene:", gene
|
|
, "\ngene_match:", gene_match
|
|
, "\nAngstrom symbol:", angstroms_symbol
|
|
, "\nNo. of duplicated muts:", dup_muts_nu
|
|
, "\nNA count for ORs:", na_count
|
|
, "\nNA count in df2:", na_count_df2
|
|
, "\nNA count in df3:", na_count_df3
|
|
, "\ndr_muts_col:", dr_muts_col
|
|
, "\nother_muts_col:", other_muts_col
|
|
, "\ndrtype_col:", resistance_col)
|
|
|
|
cat("cols imported:"
|
|
, mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2)
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
lineage_dist_combined_dm_om = "lineage_dist_combined_dm_om_PS.svg"
|
|
plot_lineage_dist_combined_dm_om = paste0(plotdir,"/", lineage_dist_combined_dm_om)
|
|
|
|
lineage_dist_combined_dm_om_L = "lineage_dist_combined_dm_om_PS_labelled.svg"
|
|
plot_lineage_dist_combined_dm_om_L = paste0(plotdir,"/", lineage_dist_combined_dm_om_L)
|
|
#========================================================================
|
|
|
|
###########################
|
|
# Data for plots
|
|
# you need merged_df2 or merged_df2_comp
|
|
# since this is one-many relationship
|
|
# i.e the same SNP can belong to multiple lineages
|
|
# using the _comp dataset means
|
|
# we lose some muts and at this level, we should use
|
|
# as much info as available, hence use df with NA
|
|
###########################
|
|
# REASSIGNMENT
|
|
my_df = merged_df2
|
|
|
|
# delete variables not required
|
|
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp
|
|
, merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig)
|
|
|
|
# quick checks
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
table(my_df$mutation_info)
|
|
|
|
#===================
|
|
# Data for plots
|
|
#===================
|
|
table(my_df$lineage); str(my_df$lineage)
|
|
|
|
# select lineages 1-4
|
|
sel_lineages = c("lineage1"
|
|
, "lineage2"
|
|
, "lineage3"
|
|
, "lineage4")
|
|
#, "lineage5"
|
|
#, "lineage6"
|
|
#, "lineage7")
|
|
|
|
# works nicely with facet wrap using labeller, but not otherwise
|
|
#my_labels = c('Lineage 1'
|
|
# , 'Lineage 2'
|
|
# , 'Lineage 3'
|
|
# , 'Lineage 4')
|
|
# #, 'Lineage 5'
|
|
# #, 'Lineage 6'
|
|
# #, 'Lineage 7')
|
|
|
|
#names(my_labels) = c('lineage1'
|
|
# , 'lineage2'
|
|
# , 'lineage3'
|
|
# , 'lineage4')
|
|
# #, 'lineage5'
|
|
# #, 'lineage6'
|
|
# #, 'lineage7')
|
|
|
|
#==========================
|
|
# subset selected lineages
|
|
#==========================
|
|
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
|
|
table(df_lin$lineage)
|
|
|
|
#{RESULT: Total number of samples for lineage}
|
|
sum(table(df_lin$lineage))
|
|
|
|
#{RESULT: No of samples within lineage}
|
|
table(df_lin$lineage)
|
|
|
|
#{Result: No. of unique mutations the 4 lineages contribute to}
|
|
length(unique(df_lin$mutationinformation))
|
|
|
|
u2 = unique(my_df$mutationinformation)
|
|
u = unique(df_lin$mutationinformation)
|
|
|
|
#{Result:Muts not present within selected lineages}
|
|
check = u2[!u2%in%u]; print(check)
|
|
|
|
# workaround to make labels appear nicely for in otherwise cases
|
|
#==================
|
|
# lineage: labels
|
|
# from "plyr"
|
|
#==================
|
|
#{Result:No of samples in selected lineages}
|
|
table(df_lin$lineage)
|
|
|
|
df_lin$lineage_labels = mapvalues(df_lin$lineage
|
|
, from = c("lineage1","lineage2", "lineage3", "lineage4")
|
|
, to = c("Lineage 1", "Lineage 2", "Lineage 3", "Lineage 4"))
|
|
table(df_lin$lineage_labels)
|
|
|
|
table(df_lin$lineage_labels) == table(df_lin$lineage)
|
|
|
|
#========================
|
|
# mutation_info: labels
|
|
#========================
|
|
#{Result:No of DM and OM muts in selected lineages}
|
|
table(df_lin$mutation_info)
|
|
|
|
df_lin$mutation_info_labels = ifelse(df_lin$mutation_info == dr_muts_col, "DM", "OM")
|
|
table(df_lin$mutation_info_labels)
|
|
|
|
table(df_lin$mutation_info) == table(df_lin$mutation_info_labels)
|
|
|
|
|
|
#========================
|
|
# duet_outcome: labels
|
|
#========================
|
|
#{Result: No. of D and S mutations in selected lineages}
|
|
table(df_lin$duet_outcome)
|
|
|
|
df_lin$duet_outcome_labels = ifelse(df_lin$duet_outcome == "Destabilising", "D", "S")
|
|
table(df_lin$duet_outcome_labels)
|
|
|
|
table(df_lin$duet_outcome) == table(df_lin$duet_outcome_labels)
|
|
|
|
|
|
#=======================
|
|
# subset dr muts only
|
|
#=======================
|
|
#my_df_dr = subset(df_lin, mutation_info == dr_muts_col)
|
|
#table(my_df_dr$mutation_info)
|
|
#table(my_df_dr$lineage)
|
|
|
|
#=========================
|
|
# subset other muts only
|
|
#=========================
|
|
#my_df_other = subset(df_lin, mutation_info == other_muts_col)
|
|
#table(my_df_other$mutation_info)
|
|
#table(my_df_other$lineage)
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for plots #
|
|
########################################################################
|
|
|
|
#==========================
|
|
# Distribution plots
|
|
#============================
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# REASSIGNMENT
|
|
df <- df_lin
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
rm(df_lin)
|
|
|
|
#******************
|
|
# generate distribution plot of lineages
|
|
#******************
|
|
# 2 : ggridges (good!)
|
|
my_ats = 15 # axis text size
|
|
my_als = 20 # axis label size
|
|
n_colours = length(unique(df$duet_scaled))
|
|
my_palette <- colorRampPalette(c(mcsm_red2, mcsm_red1, mcsm_mid, mcsm_blue1, mcsm_blue2))(n = n_colours+1)
|
|
|
|
#=======================================
|
|
# Plot 1: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
|
|
# else same as geom_density_ridges)
|
|
# x = duet_scaled
|
|
# y = duet_outcome
|
|
# fill = duet_scaled
|
|
# Facet: Lineage
|
|
#=======================================
|
|
# output individual svg
|
|
#plot_lineage_dist_duet_f paste0(plotdir,"/", "lineage_dist_duet_f.svg")
|
|
#plot_lineage_dist_duet_f
|
|
#svg(plot_lineage_dist_duet_f)
|
|
|
|
p1 = ggplot(df, aes(x = duet_scaled
|
|
, y = duet_outcome))+
|
|
geom_density_ridges_gradient(aes(fill = ..x..)
|
|
#, jittered_points = TRUE
|
|
, scale = 3
|
|
, size = 0.3 ) +
|
|
facet_wrap( ~lineage_labels
|
|
# , scales = "free"
|
|
# , labeller = labeller(lineage = my_labels)
|
|
) +
|
|
coord_cartesian( xlim = c(-1, 1)) +
|
|
scale_fill_gradientn(colours = my_palette
|
|
, name = "DUET"
|
|
#, breaks = c(-1, 0, 1)
|
|
#, labels = c(-1,0,1)
|
|
#, limits = c(-1,1)
|
|
) +
|
|
theme(axis.text.x = element_text(size = my_ats
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
#, axis.text.y = element_blank()
|
|
, axis.text.y = element_text(size = my_ats)
|
|
, axis.title.x = element_text(size = my_ats)
|
|
, axis.title.y = element_blank()
|
|
, axis.ticks.y = element_blank()
|
|
, plot.title = element_blank()
|
|
, strip.text = element_text(size = my_als)
|
|
, legend.text = element_text(size = my_als-10)
|
|
#, legend.title = element_text(size = my_als-6)
|
|
, legend.title = element_blank()
|
|
, legend.position = c(-0.08, 0.41)
|
|
#, legend.direction = "horizontal"
|
|
#, legend.position = "left"
|
|
)+
|
|
labs(x = "DUET")
|
|
|
|
p1
|
|
|
|
|
|
#p1_with_legend = p1 + guides(fill = guide_colourbar(label = FALSE))
|
|
|
|
#=======================================
|
|
# Plot 2: lineage dist: geom_density_ridges, allows alpha to be set
|
|
# x = duet_scaled
|
|
# y = lineage_labels
|
|
# fill = mutation_info
|
|
# NO FACET
|
|
#=======================================
|
|
# output svg
|
|
#plot_lineage_dist_duet_dm_om = paste0(plotdir,"/", "lineage_dist_duet_dm_om.svg")
|
|
#plot_lineage_dist_duet_dm_om
|
|
#svg(plot_lineage_dist_duet_dm_om)
|
|
|
|
p2 = ggplot(df, aes(x = duet_scaled
|
|
, y = lineage_labels))+
|
|
geom_density_ridges(aes(fill = factor(mutation_info_labels))
|
|
, scale = 3
|
|
, size = 0.3
|
|
, alpha = 0.8) +
|
|
coord_cartesian( xlim = c(-1, 1)) +
|
|
scale_fill_manual(values = c("#E69F00", "#999999")) +
|
|
theme(axis.text.x = element_text(size = my_ats
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
, axis.text.y = element_text(size = my_ats)
|
|
, axis.title.x = element_text(size = my_ats)
|
|
, axis.title.y = element_blank()
|
|
, axis.ticks.y = element_blank()
|
|
, plot.title = element_blank()
|
|
, strip.text = element_text(size = my_als)
|
|
, legend.text = element_text(size = my_als-4)
|
|
, legend.title = element_text(size = my_als-4)
|
|
, legend.position = c(0.8, 0.9)) +
|
|
labs(x = "DUET"
|
|
, fill = "Mutation class") # legend title
|
|
|
|
p2
|
|
|
|
#=======================================
|
|
# Plot 3: lineage dist: geom_density_ridges_gradient (allows aesthetics to vary along ridgeline, no alpha setting!)
|
|
# else same as geom_density_ridges)
|
|
# x = duet_scaled
|
|
# y = lineage_labels
|
|
# fill = duet_scaled
|
|
# NO FACET (nf)
|
|
#=======================================
|
|
# output individual svg
|
|
#plot_lineage_dist_duet_nf = paste0(plotdir,"/", "lineage_dist_duet_nf.svg")
|
|
#plot_lineage_dist_duet_nf
|
|
#svg(plot_lineage_dist_duet_nf)
|
|
|
|
p3 = ggplot(df, aes(x = duet_scaled
|
|
, y = lineage_labels))+
|
|
geom_density_ridges_gradient(aes(fill = ..x..)
|
|
#, jittered_points = TRUE
|
|
, scale = 3
|
|
, size = 0.3 ) +
|
|
coord_cartesian( xlim = c(-1, 1)) +
|
|
scale_fill_gradientn(colours = my_palette, name = "DUET") +
|
|
theme(axis.text.x = element_text(size = my_ats
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
|
|
, axis.text.y = element_text(size = my_ats)
|
|
, axis.title.x = element_text(size = my_ats)
|
|
, axis.title.y = element_blank()
|
|
, axis.ticks.y = element_blank()
|
|
, plot.title = element_blank()
|
|
, strip.text = element_text(size = my_als)
|
|
, legend.text = element_text(size = my_als-10)
|
|
, legend.title = element_text(size = my_als-3)
|
|
, legend.position = c(0.8, 0.8)) +
|
|
#, legend.direction = "horizontal")+
|
|
#, legend.position = "top")+
|
|
labs(x = "DUET")
|
|
|
|
p3
|
|
|
|
########################################################################
|
|
#==============
|
|
# combine plots
|
|
#===============
|
|
# 1) without labels
|
|
plot_lineage_dist_combined_dm_om
|
|
svg(plot_lineage_dist_combined_dm_om, width = 12, height = 6)
|
|
|
|
OutPlot1 = cowplot::plot_grid(p1, p2
|
|
, rel_widths = c(0.5/2, 0.5/2))
|
|
|
|
print(OutPlot1)
|
|
dev.off()
|
|
|
|
|
|
# 2) with labels
|
|
plot_lineage_dist_combined_dm_om_L
|
|
svg(plot_lineage_dist_combined_dm_om_L, width = 12, height = 6)
|
|
|
|
OutPlot2 = cowplot::plot_grid(p1, p2
|
|
#, labels = c("(a)", "(b)")
|
|
, labels = "AUTO"
|
|
#, label_x = -0.045, label_y = 0.92
|
|
#, hjust = -0.7, vjust = -0.5
|
|
#, align = "h"
|
|
, rel_widths = c(0.5/2, 0.5/2)
|
|
, label_size = my_als)
|
|
|
|
print(OutPlot2)
|
|
dev.off()
|
|
|
|
##############################################################################
|