LSHTM_analysis/scripts/combine_afs_ors.py

398 lines
12 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 4 (mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# This is done in 2 steps:
# merge 1:
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
import argparse
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# local import
#from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
from reference_dict import low_3letter_dict
#=======================================================================
#%% command line args
#arg_parser = argparse.ArgumentParser()
#arg_parser.add_argument('-d', '--drug', help = 'drug name', default = 'pyrazinamide')
#arg_parser.add_argument('-g', '--gene', help = 'gene name', default = 'pncA') # case sensitive
#args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
# cmd variables
#drug = args.drug
#gene = args.gene
#gene_match = gene + '_p.'
#==========
# dir
#==========
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/' + 'input'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info.csv'
in_filename_afor = gene.lower() + '_af_or.csv'
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
infile0 = indir + '/' + in_filename_snpinfo
infile1 = outdir + '/' + in_filename_afor
infile2 = outdir + '/' + in_filename_afor_kin
print('Input file0:', infile0
, '\nInput file1:', infile1
, '\nInput file2:', infile2
, '\n===================================================================')
#=======
# output
#=======
out_filename = gene.lower() + '_metadata_afs_ors.csv'
outfile = outdir + '/' + out_filename
print('Output file:', outfile
, '\n===================================================================')
del(in_filename_afor, in_filename_afor_kin, datadir, indir, outdir)
#%% end of variable assignment for input and output files
#=======================================================================
#%% format mutations
# mut_format: gene.abc1cde | 1A>1B
#========================
# read input csv files to combine
#========================
snpinfo_df = pd.read_csv(infile0, sep = ',')
#snpinfo_ncols = len(snpinfo_df.columns)
#snpinfo.shape[0] = len(snpinfo_df)
print('No. of rows in', infile0, ':', snpinfo_df.shape[0]
, '\nNo. of cols in', infile0, ':', snpinfo_df.shape[1])
afor_df = pd.read_csv(infile1, sep = ',')
#afor_ncols = len(afor_df.columns)
#afor.shape[0] = len(afor_df)
print('No. of rows in', infile1, ':', afor_df.shape[0]
, '\nNo. of cols in', infile1, ':', afor_df.shape[1])
afor_kin_df = pd.read_csv(infile2, sep = ',')
#afor_kin.shape[0] = len(afor_kin_df)
#afor_kin_ncols = len(afor_kin_df.columns)
print('No. of rows in', infile2, ':', afor_kin_df.shape[0]
, '\nNo. of cols in', infile2, ':', afor_kin_df.shape[1])
#%% Process afor_df
#1) pull all snp_info so you have ref_allele, etc
# i.e merge afor_df and snpinfo_df
# find merging column
left_df = afor_df.copy()
right_df = snpinfo_df.copy()
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
print('Length of common cols:', len(common_cols)
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
#https://stackoverflow.com/questions/44639772/python-pandas-column-dtype-object-causing-merge-to-fail-with-dtypewarning-colu
print('selecting consistent dtypes for merging (object i.e string)')
merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
print(merging_cols)
nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols))
# drop duplicates else the expected rows don't match
print('Checking for duplicates in common col:', common_cols
, '\nNo of duplicates:'
, len(right_df[right_df.duplicated(common_cols)])
, '\noriginal length:', right_df.shape[0])
right_df = right_df[~right_df.duplicated(common_cols)]
print('\nrevised length:', right_df.shape[0])
# checking cross-over of mutations in the two dfs to merge
ndiff1 = left_df.shape[0] - left_df['mutation'].isin(right_df['mutation']).sum()
print('There are', ndiff1, 'mutations with OR, but no snp_info'
, '\nExtracting and writing out file')
missing_mutinfo = left_df[~left_df['mutation'].isin(right_df['mutation'])]
#missing_mutinfo.to_csv('infoless_muts.csv')
ndiff2 = right_df.shape[0] - right_df['mutation'].isin(left_df['mutation']).sum()
print('There are', ndiff2, 'mutations that do not have OR, but have snp_info')
# Define join type
#my_join = 'inner'
#my_join = 'outer'
#my_join = 'right'
my_join = 'left'
print('combing with join:', my_join)
combined_df1 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
print('\nshape:', combined_df1.shape)
# inner = 252
left_df.shape[0] - ndiff1
# outer = 331
right_df.shape[0] + ndiff1
# right = 290
right_df.shape[0]
# left = 293
left_df.shape[0]
#%%
# see if you want an extra clause here!
# Define join type
#my_join = 'inner'
#my_join = 'outer'
#my_join = 'right'
my_join = 'left'
fail = False
print('combing with:', my_join)
combined_df1 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
if my_join == 'inner':
#expected_rows = left_df.shape[0] - ndiff1
expected_rows = left_df.shape[0] - ndiff1
if my_join == 'outer':
#expected_rows = right_df.shape[0] + ndiff1
expected_rows = right_df.shape[0] + ndiff1
if my_join == 'right':
#expected_rows = right_df.shape[0]
expected_rows = right_df.shape[0]
if my_join == 'left':
#expected_rows = left_df.shape[0]
expected_rows = left_df.shape[0]
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
if len(combined_df1) == expected_rows and len(combined_df1.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df1)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df1.columns))
if fail:
sys.exit()
# delete variables
del(left_df, right_df, common_cols, merging_cols, nmerging_cols, my_join, ndiff1, ndiff2, missing_mutinfo
, expected_rows, expected_cols, fail)
del(afor_df, snpinfo_df)
#%% Second merge: combined_df1 and afor_kin_df
left_df = combined_df1.copy()
right_df = afor_kin_df.copy()
common_cols = np.intersect1d(left_df.columns, right_df.columns).tolist()
print('Length of common cols:', len(common_cols)
, '\ncommon column/s:', common_cols, 'type:', type(common_cols))
#https://stackoverflow.com/questions/44639772/python-pandas-column-dtype-object-causing-merge-to-fail-with-dtypewarning-colu
print('selecting consistent dtypes for merging (object i.e string)')
#FIXME
#merging_cols = left_df[common_cols].select_dtypes(include = [object]).columns.tolist()
merging_cols = ['wild_type', 'mutant_type', 'mutationinformation']
nmerging_cols_cols = len(merging_cols)
print(merging_cols)
nmerging_cols = len(merging_cols)
print(' length of merging cols:', nmerging_cols
, '\nmerging cols:', merging_cols, 'type:', type(merging_cols))
ndiff1 = left_df.shape[0] - left_df['mutationinformation'].isin(right_df['mutationinformation']).sum()
print('There are', ndiff1, 'mutations with OR, but not in OR kinship'
, '\nExtracting and writing out file')
missing_mutinfo = left_df[~left_df['mutationinformation'].isin(right_df['mutationinformation'])]
#missing_mutinfo.to_csv('infoless_muts.csv')
ndiff2 = right_df.shape[0] - right_df['mutationinformation'].isin(left_df['mutationinformation']).sum()
print('There are', ndiff2, 'mutations that do not have OR, but have OR kinship')
my_join = 'outer'
fail = False
print('combing with:', my_join)
combined_df2 = pd.merge(left_df, right_df, on = merging_cols, how = my_join)
if my_join == 'inner':
#expected_rows = left_df.shape[0] - ndiff1
expected_rows = left_df.shape[0] - ndiff1
if my_join == 'outer':
#expected_rows = right_df.shape[0] + ndiff1
expected_rows = right_df.shape[0] + ndiff1
if my_join == 'right':
#expected_rows = right_df.shape[0]
expected_rows = right_df.shape[0]
if my_join == 'left':
#expected_rows = left_df.shape[0]
expected_rows = left_df.shape[0]
expected_cols = left_df.shape[1] + right_df.shape[1] - nmerging_cols
if len(combined_df2) == expected_rows and len(combined_df2.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df2)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df2.columns))
if fail:
sys.exit()
#%% check duplicate cols: ones containing suffix '_x' or '_y'
# should only be position
foo = combined_df2.filter(regex = r'.*_x|_y', axis = 1)
print(foo.columns) # should only be position
# drop position col containing suffix '_y' and then rename col without suffix
combined_or_df = combined_df2.drop(combined_df2.filter(regex = r'.*_y').columns, axis = 1)
#combined_or_df['position_x'].head()
# renaming columns
#combined_or_df.rename(columns = {'position_x': 'position'}, inplace = True)
#combined_or_df['position'].head()
#recheck
#foo = combined_or_df.filter(regex = r'.*_x|_y', axis = 1)
#print(foo.columns) # should only be empty
# remove '_x' from some cols
import re
def clean_colnames(colname):
if re.search('.*_x', colname):
pos = re.search('.*_x', colname).start()
return colname[:pos]
else:
return colname
#https://stackoverflow.com/questions/26500156/renaming-column-in-dataframe-for-pandas-using-regular-expression
combined_or_df.columns
combined_or_df.rename(columns=lambda x: re.sub('_x$','',x), inplace = True)
combined_or_df.columns
#FIXME: this should be 0 when you run the 35k dataset
combined_or_df['chromosome_number'].isna().sum()
#%% rearraging columns
print('Dim of df prefromatting:', combined_or_df.shape)
print(combined_or_df.columns, '\nshape:', combined_or_df.shape)
# removing unnecessary column
combined_or_df = combined_or_df.drop(['symbol'], axis = 1)
print(combined_or_df.columns, '\nshape:', combined_or_df.shape)
#%% reorder columns
#https://stackoverflow.com/questions/13148429/how-to-change-the-order-of-dataframe-columns
# setting column's order
output_df = combined_or_df[['mutation',
'mutationinformation',
'wild_type',
'position',
'mutant_type',
'chr_num_allele',
'ref_allele',
'alt_allele',
'mut_info',
'mut_type',
'gene_id',
'gene_number',
'mut_region',
'reference_allele',
'alternate_allele',
'chromosome_number',
'af',
'af_kin',
'or_kin',
'or_logistic',
'or_mychisq',
'est_chisq',
'or_fisher',
'ci_low_logistic',
'ci_hi_logistic',
'ci_low_fisher',
'ci_hi_fisher',
'pwald_kin',
'pval_logistic',
'pval_fisher',
'pval_chisq',
'beta_logistic',
'beta_kin',
'se_logistic',
'se_kin',
'zval_logistic',
'logl_H1_kin',
'l_remle_kin',
'wt_3let',
'mt_3let',
'n_diff',
'tot_diff',
'n_miss']]
# sanity check after rearranging
if combined_or_df.shape == output_df.shape and set(combined_or_df.columns) == set(output_df.columns):
print('PASS: Successfully formatted df with rearranged columns')
else:
sys.exit('FAIL: something went wrong when rearranging columns!')
#%% write file
print('\n====================================================================='
, '\nWriting output file:\n', outfile
, '\nNo.of rows:', len(output_df)
, '\nNo. of cols:', len(output_df.columns))
output_df.to_csv(outfile, index = False)