341 lines
No EOL
14 KiB
Python
341 lines
No EOL
14 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Jun 29 19:44:06 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
import sys, os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import re
|
|
from copy import deepcopy
|
|
from sklearn import linear_model
|
|
from sklearn import datasets
|
|
from collections import Counter
|
|
|
|
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
|
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
|
|
|
from sklearn.naive_bayes import BernoulliNB
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.svm import SVC
|
|
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
|
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
|
from sklearn.naive_bayes import GaussianNB
|
|
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
|
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
|
|
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
|
from sklearn.neural_network import MLPClassifier
|
|
|
|
from sklearn.svm import SVC
|
|
from xgboost import XGBClassifier
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|
|
|
from sklearn.compose import ColumnTransformer
|
|
from sklearn.compose import make_column_transformer
|
|
|
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
|
|
|
# added
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
|
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
|
|
|
from sklearn.pipeline import Pipeline, make_pipeline
|
|
|
|
from sklearn.feature_selection import RFE, RFECV
|
|
|
|
import itertools
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
|
|
from statistics import mean, stdev, median, mode
|
|
|
|
from imblearn.over_sampling import RandomOverSampler
|
|
from imblearn.under_sampling import RandomUnderSampler
|
|
from imblearn.over_sampling import SMOTE
|
|
from sklearn.datasets import make_classification
|
|
from imblearn.combine import SMOTEENN
|
|
from imblearn.combine import SMOTETomek
|
|
|
|
from imblearn.over_sampling import SMOTENC
|
|
from imblearn.under_sampling import EditedNearestNeighbours
|
|
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
|
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.impute import KNNImputer as KNN
|
|
import json
|
|
import argparse
|
|
import re
|
|
import itertools
|
|
from sklearn.model_selection import LeaveOneGroupOut
|
|
###############################################################################
|
|
homedir = os.path.expanduser("~")
|
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
|
sys.path
|
|
###############################################################################
|
|
outdir = homedir + '/git/LSHTM_ML/output/combined/'
|
|
|
|
#====================
|
|
# Import ML functions
|
|
#====================
|
|
from ml_data_combined import *
|
|
|
|
#njobs = {'n_jobs': os.cpu_count() } # the number of jobs should equal the number of CPU cores
|
|
|
|
########################################################################
|
|
# COMPLETE data: No tts_split
|
|
########################################################################
|
|
#%%
|
|
def combined_DF_OS(cm_input_df
|
|
, all_genes = ["embb", "katg", "rpob", "pnca", "gid", "alr"]
|
|
, bts_genes = ["embb", "katg", "rpob", "pnca", "gid"]
|
|
, cols_to_drop = ['dst', 'dst_mode', 'gene_name']
|
|
, target_var = 'dst_mode'
|
|
, gene_group = 'gene_name'
|
|
, std_gene_omit = []
|
|
#, output_dir = outdir
|
|
#, file_suffix = ""
|
|
, oversampling = True
|
|
, k_smote = 5
|
|
, random_state = 42
|
|
, njobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
|
|
):
|
|
|
|
outDict = {}
|
|
rs = {'random_state': random_state}
|
|
njobs = {'n_jobs': njobs }
|
|
|
|
for bts_gene in bts_genes:
|
|
print('\n BTS gene:', bts_gene)
|
|
if not std_gene_omit:
|
|
training_genesL = ['alr']
|
|
else:
|
|
training_genesL = []
|
|
|
|
tr_gene_omit = std_gene_omit + [bts_gene]
|
|
n_tr_genes = (len(bts_genes) - (len(std_gene_omit)))
|
|
#n_total_genes = (len(bts_genes) - len(std_gene_omit))
|
|
n_total_genes = len(all_genes)
|
|
|
|
training_genesL = training_genesL + list(set(bts_genes) - set(tr_gene_omit))
|
|
#training_genesL = [element for element in bts_genes if element not in tr_gene_omit]
|
|
|
|
print('\nTotal genes: ', n_total_genes
|
|
,'\nTraining on:', n_tr_genes
|
|
,'\nTraining on genes:', training_genesL
|
|
, '\nOmitted genes:', tr_gene_omit
|
|
, '\nBlind test gene:', bts_gene)
|
|
|
|
print('\nDim of data:', cm_input_df.shape)
|
|
|
|
tts_split_type = "logo_skf_BT_" + bts_gene
|
|
|
|
#-------
|
|
# training
|
|
#------
|
|
cm_training_df = cm_input_df[~cm_input_df['gene_name'].isin(tr_gene_omit)]
|
|
|
|
cm_X = cm_training_df.drop(cols_to_drop, axis=1, inplace=False)
|
|
#cm_y = cm_training_df.loc[:,'dst_mode']
|
|
cm_y = cm_training_df.loc[:, target_var]
|
|
|
|
gene_group = cm_training_df.loc[:,'gene_name']
|
|
|
|
print('\nTraining data dim:', cm_X.shape
|
|
, '\nTraining Target dim:', cm_y.shape)
|
|
|
|
if all(cm_X.columns.isin(cols_to_drop) == False):
|
|
print('\nChecked training df does NOT have Target var')
|
|
else:
|
|
sys.exit('\nFAIL: training data contains Target var')
|
|
|
|
yc1 = Counter(cm_y)
|
|
yc1_ratio = yc1[0]/yc1[1]
|
|
|
|
#---------------
|
|
# BTS: genes
|
|
#---------------
|
|
cm_test_df = cm_input_df[cm_input_df['gene_name'].isin([bts_gene])]
|
|
|
|
cm_bts_X = cm_test_df.drop(cols_to_drop, axis = 1, inplace = False)
|
|
#cm_bts_y = cm_test_df.loc[:, 'dst_mode']
|
|
cm_bts_y = cm_test_df.loc[:, target_var]
|
|
|
|
print('\nTEST data dim:' , cm_bts_X.shape
|
|
, '\nTEST Target dim:' , cm_bts_y.shape)
|
|
|
|
print("Running Multiple models on LOGO with SKF")
|
|
|
|
yc2 = Counter(cm_bts_y)
|
|
yc2_ratio = yc2[0]/yc2[1]
|
|
|
|
|
|
outDict.update({'X' : cm_X
|
|
, 'y' : cm_y
|
|
, 'X_bts' : cm_bts_X
|
|
, 'y_bts' : cm_bts_y
|
|
})
|
|
|
|
if oversampling:
|
|
#######################################################################
|
|
# RESAMPLING
|
|
#######################################################################
|
|
#------------------------------
|
|
# Simple Random oversampling
|
|
# [Numerical + catgeorical]
|
|
#------------------------------
|
|
oversample = RandomOverSampler(sampling_strategy='minority')
|
|
X_ros, y_ros = oversample.fit_resample(cm_X, cm_y)
|
|
print('\nSimple Random OverSampling\n', Counter(y_ros))
|
|
print(X_ros.shape)
|
|
|
|
#------------------------------
|
|
# Simple Random Undersampling
|
|
# [Numerical + catgeorical]
|
|
#------------------------------
|
|
undersample = RandomUnderSampler(sampling_strategy='majority')
|
|
X_rus, y_rus = undersample.fit_resample(cm_X, cm_y)
|
|
print('\nSimple Random UnderSampling\n', Counter(y_rus))
|
|
print(X_rus.shape)
|
|
|
|
#------------------------------
|
|
# Simple combine ROS and RUS
|
|
# [Numerical + catgeorical]
|
|
#------------------------------
|
|
oversample = RandomOverSampler(sampling_strategy='minority')
|
|
X_ros, y_ros = oversample.fit_resample(cm_X, cm_y)
|
|
undersample = RandomUnderSampler(sampling_strategy='majority')
|
|
X_rouC, y_rouC = undersample.fit_resample(X_ros, y_ros)
|
|
print('\nSimple Combined Over and UnderSampling\n', Counter(y_rouC))
|
|
print(X_rouC.shape)
|
|
|
|
#------------------------------
|
|
# SMOTE_NC: oversampling
|
|
# [numerical + categorical]
|
|
#https://stackoverflow.com/questions/47655813/oversampling-smote-for-binary-and-categorical-data-in-python
|
|
#------------------------------
|
|
# Determine categorical and numerical features
|
|
numerical_ix = cm_X.select_dtypes(include=['int64', 'float64']).columns
|
|
numerical_ix
|
|
num_featuresL = list(numerical_ix)
|
|
numerical_colind = cm_X.columns.get_indexer(list(numerical_ix) )
|
|
numerical_colind
|
|
|
|
categorical_ix = cm_X.select_dtypes(include=['object', 'bool']).columns
|
|
categorical_ix
|
|
categorical_colind = cm_X.columns.get_indexer(list(categorical_ix))
|
|
categorical_colind
|
|
|
|
#k_sm = 5 # default
|
|
k_sm = k_smote
|
|
sm_nc = SMOTENC(categorical_features=categorical_colind, k_neighbors = k_sm
|
|
, **rs
|
|
, **njobs)
|
|
|
|
X_smnc, y_smnc = sm_nc.fit_resample(cm_X, cm_y)
|
|
print('\nSMOTE_NC OverSampling\n', Counter(y_smnc))
|
|
print(X_smnc.shape)
|
|
|
|
#======================
|
|
# vars
|
|
#======================
|
|
#======================================================
|
|
# Determine categorical and numerical features
|
|
#======================================================
|
|
numerical_cols = cm_X.select_dtypes(include=['int64', 'float64']).columns
|
|
numerical_cols
|
|
categorical_cols = cm_X.select_dtypes(include=['object', 'bool']).columns
|
|
categorical_cols
|
|
|
|
print('\n-------------------------------------------------------------'
|
|
, '\nSuccessfully generated training and test data:'
|
|
#, '\nData used:' , data_type
|
|
#, '\nSplit type:', split_type
|
|
|
|
, '\n\nTotal no. of input features:' , len(cm_X.columns)
|
|
, '\n--------No. of numerical features:' , len(numerical_cols)
|
|
, '\n--------No. of categorical features:', len(categorical_cols)
|
|
|
|
, '\n==========================='
|
|
, '\n Resampling: NONE'
|
|
, '\n Baseline'
|
|
, '\n==========================='
|
|
|
|
, '\ninput data size:' , len(cm_input_df)
|
|
|
|
, '\n\nTrain data size:' , cm_X.shape
|
|
, '\ny_train numbers:' , yc1
|
|
|
|
, '\n\nTest data size:' , cm_bts_X.shape
|
|
, '\ny_test_numbers:' , yc2
|
|
|
|
, '\n\ny_train ratio:' , yc1_ratio
|
|
, '\ny_test ratio:' , yc2_ratio
|
|
, '\n-------------------------------------------------------------')
|
|
|
|
|
|
print('\nGenerated Resampled data as below:'
|
|
, '\n================================='
|
|
, '\nResampling: Random oversampling'
|
|
, '\n================================'
|
|
|
|
, '\n\nTrain data size:', X_ros.shape
|
|
, '\ny_train numbers:', len(y_ros)
|
|
, '\n\ny_train ratio:', Counter(y_ros)[0]/Counter(y_ros)[1]
|
|
|
|
, '\ny_test ratio:' , yc2_ratio
|
|
##################################################################
|
|
, '\n================================'
|
|
, '\nResampling: Random underampling'
|
|
, '\n================================'
|
|
|
|
, '\n\nTrain data size:', X_rus.shape
|
|
, '\ny_train numbers:', len(y_rus)
|
|
, '\n\ny_train ratio:', Counter(y_rus)[0]/Counter(y_rus)[1]
|
|
|
|
, '\ny_test ratio:' , yc2_ratio
|
|
##################################################################
|
|
, '\n================================'
|
|
, '\nResampling:Combined (over+under)'
|
|
, '\n================================'
|
|
|
|
, '\n\nTrain data size:', X_rouC.shape
|
|
, '\ny_train numbers:', len(y_rouC)
|
|
, '\n\ny_train ratio:', Counter(y_rouC)[0]/Counter(y_rouC)[1]
|
|
|
|
, '\ny_test ratio:' , yc2_ratio
|
|
##################################################################
|
|
, '\n=============================='
|
|
, '\nResampling: Smote NC'
|
|
, '\n=============================='
|
|
|
|
, '\n\nTrain data size:', X_smnc.shape
|
|
, '\ny_train numbers:', len(y_smnc)
|
|
, '\n\ny_train ratio:', Counter(y_smnc)[0]/Counter(y_smnc)[1]
|
|
|
|
, '\ny_test ratio:' , yc2_ratio
|
|
##################################################################
|
|
, '\n-------------------------------------------------------------')
|
|
|
|
outDict.update({'X_ros' : X_ros
|
|
, 'y_ros' : y_ros
|
|
|
|
, 'X_rus' : X_rus
|
|
, 'y_rus' : y_rus
|
|
|
|
, 'X_rouC': X_rouC
|
|
, 'y_rouC': y_rouC
|
|
|
|
, 'X_smnc': X_smnc
|
|
, 'y_smnc': y_smnc})
|
|
return(outDict)
|
|
else:
|
|
return(outDict)
|
|
|