LSHTM_analysis/scripts/plotting/logo_combined.R

279 lines
8.6 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: producing logo-type plot showing
# multiple muts per position coloured by aa property
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
source("Header_TT.R")
#library(ggplot2)
#library(data.table)
#library(dplyr)
#===========
# input
#===========
source("combining_dfs_plotting.R")
#===========
# output
#===========
logo_combined_labelled = "logo_combined_labelled.svg"
plot_logo_combined_labelled = paste0(plotdir,"/", logo_combined_labelled)
##########################################################################
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
my_df = merged_df3
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# clear excess variables
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
, merged_df3_comp, merged_df3_comp_lig
, my_df_u, my_df_u_lig, merged_df3_lig)
colnames(my_df)
str(my_df)
#rownames(my_df) = my_df$mutation
c1 = unique(my_df$position)
nrow(my_df)
# get freq count of positions so you can subset freq<1
#require(data.table)
setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)] #189, 36
table(my_df$position)
table(my_df$mut_pos_occurrence)
max_mut = max(table(my_df$position))
# extract freq_pos>1
my_df_snp = my_df[my_df$mut_pos_occurrence!=1,]
u = unique(my_df_snp$position)
max_mult_mut = max(table(my_df_snp$position))
if (nrow(my_df_snp) == nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]] ){
cat("PASS: positions with multiple muts extracted"
, "\nNo. of mutations:", nrow(my_df_snp)
, "\nNo. of positions:", length(u)
, "\nMax no. of muts at any position", max_mult_mut)
}else{
cat("FAIL: positions with multiple muts could NOT be extracted"
, "\nExpected:",nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]]
, "\nGot:", nrow(my_df_snp) )
}
cat("\nNo. of sites with only 1 mutations:", table(my_df$mut_pos_occurrence)[[1]])
########################################################################
# end of data extraction and cleaning for_mychisq plots #
########################################################################
#==============
# matrix for_mychisq mutant type
# frequency of mutant type by position
#==============
table(my_df_snp$mutant_type, my_df_snp$position)
tab_mt = table(my_df_snp$mutant_type, my_df_snp$position)
class(tab_mt)
# unclass to convert to matrix
tab_mt = unclass(tab_mt)
tab_mt = as.matrix(tab_mt, rownames = T)
#should be TRUE
is.matrix(tab_mt)
rownames(tab_mt) #aa
colnames(tab_mt) #pos
#**************
# Plot 1: mutant logo
#**************
p0 = ggseqlogo(tab_mt
, method = 'custom'
, seq_type = 'aa') +
#ylab('my custom height') +
theme_logo()+
scale_x_discrete(#breaks = 1:ncol(tab_mt)
labels = as.numeric(colnames(tab_mt))
, limits = factor(as.numeric(colnames(tab_mt))))+
scale_y_continuous( breaks = 1:max_mult_mut
, limits = c(0, max_mult_mut))
p0
# further customisation
p1 = p0 + theme(axis.text.x = element_text(size = 16
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_blank()
, legend.position = "none")
#, axis.text.y = element_text(size = 20))
p1
#==============
# matrix for wild type
# frequency of wild type by position
#==============
tab_wt = table(my_df_snp$wild_type, my_df_snp$position); tab_wt
tab_wt = unclass(tab_wt)
#remove wt duplicates
wt = my_df_snp[, c("position", "wild_type")]
wt = wt[!duplicated(wt),]
tab_wt = table(wt$wild_type, wt$position); tab_wt # should all be 1
rownames(tab_wt)
rownames(tab_wt)
#**************
# Plot 2: wild_type logo
#**************
# sanity check: MUST BE TRUE
identical(colnames(tab_mt), colnames(tab_wt))
identical(ncol(tab_mt), ncol(tab_wt))
p2 = ggseqlogo(tab_wt
, method = 'custom'
, seq_type = 'aa'
#, col_scheme = "taylor"
#, col_scheme = chemistry2
) +
#ylab('my custom height') +
theme(axis.text.x = element_blank()
, axis.text.y = element_blank()) +
#theme_logo() +
scale_x_discrete(breaks = 1:ncol(tab_wt)
, labels = colnames(tab_wt))
p2
# further customise
p3 = p2 +
theme(legend.position = "bottom"
#, legend.title = element_blank()
, legend.title = element_text("Amino acid properties", size = 20)
, legend.text = element_text( size = 20)
, axis.text.x = element_text(size = 20, angle = 90)
, axis.text.y = element_blank()
, axis.title.y = element_blank()
, axis.title.x = element_text(size = 22))+
labs(x= "Wild-type Position")
p3
#======================================================================
# logo with OR
#=======================================================================
# quick checks
colnames(my_df)
str(my_df)
c1 = unique(my_df$position)
nrow(my_df)
cat("No. of rows in my_df:", nrow(my_df)
, "\nDistinct positions corresponding to snps:", length(c1)
, "\n===========================================================")
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: Think and decide what you want to remove
# mut_pos_occurence < 1 or sample_pos_occurrence <1
# get freq count of positions so you can subset freq<1
require(data.table)
#setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)]
#extract freq_pos>1
#my_df_snp = my_df[my_df$occurrence!=1,]
#u = unique(my_df_snp$position)
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT to prevent changing code
head(my_df_snp) #(positions with multiple snps) only
length(unique(my_df_snp$position))
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#=======================================================================
#%% logo plots from dataframe
#############
# PLOTS: ggseqlogo with custom height
# https://omarwagih.github.io/ggseqlogo/
#############
foo = my_df_snp[, c("position", "mutant_type","duet_scaled", "or_mychisq"
, "mut_prop_polarity", "mut_prop_water") ]
my_df_snp$log10or = log10(my_df_snp$or_mychisq)
logo_data = my_df_snp[, c("position", "mutant_type", "or_mychisq", "log10or")]
logo_data_or = my_df_snp[, c("position", "mutant_type", "or_mychisq")]
#wide_df_or <- logo_data_or %>% spread(position, or_mychisq, fill = 0.0)
wide_df_or <- logo_data_or %>% spread(position, or_mychisq, fill = NA)
wide_df_or = as.matrix(wide_df_or)
rownames(wide_df_or) = wide_df_or[,1]
wide_df_or = wide_df_or[,-1]
str(wide_df_or)
position_or = as.numeric(colnames(wide_df_or))
#===========================================
#custom height (OR) logo plot: CORRECT x-axis labelling
#============================================
# custom height (OR) logo plot: yayy works
logo_or = ggseqlogo(wide_df_or, method="custom", seq_type="aa") + ylab("my custom height") +
theme(axis.text.x = element_text(size = 16
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 18
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.y = element_text(size = 18)
, axis.title.x = element_blank()
, legend.position = "none")+
scale_x_discrete( labels = position_or
, limits = factor(1:length(position_or))) +
scale_y_discrete(breaks = c(50, 150, 250, 350)
, labels = c(50, 150, 250, 350)
, limits = c(50, 150, 250, 350)
) +
xlab("Position") +
ylab("Odds Ratio")
logo_or
########################################################################
#=============================
# combine plots for output
#=============================
cat("Output plot:", plot_logo_combined_labelled)
svg(plot_logo_combined_labelled, width = 25, height = 10)
OutPlot2 = cowplot::plot_grid(logo_or, p1, p3
, nrow = 3
, align = "hv"
#, labels = c("(a)","(b)", "(c)")
, labels = "AUTO"
, rel_heights = c(3/8, 3/8, 1.5/8)
, rel_widths = c(0.85, 1, 1)
, label_size = 25)
print(OutPlot2)
dev.off()