LSHTM_analysis/scripts/plotting/plotting_data.R

126 lines
No EOL
3.9 KiB
R
Executable file

#!/usr/bin/env Rscript
#########################################################
# TASK: formatting data that will be used for various plots
# useful links
#https://stackoverflow.com/questions/38851592/r-append-column-in-a-dataframe-with-frequency-count-based-on-two-columns
#########################################################
# working dir and loading libraries
#getwd()
#setwd("~/git/LSHTM_analysis/scripts/plotting")
#getwd()
library(data.table)
library(dplyr)
#=========================================================
plotting_data <- function(infile_params) {
cat(paste0("Input file 1:", infile_params, '\n') )
# These globals are created by import_dirs()
cat('columns based on variables:\n'
, drug
, '\n'
, dr_muts_col
, '\n'
, other_muts_col
, "\n"
, resistance_col
, '\n===============================================================')
#%%===============================================================
###########################
# Read file: struct params
###########################
#cat("Reading struct params including mcsm:", in_filename_params)
my_df = read.csv(infile_params, header = T)
cat("\nInput dimensions:", dim(my_df))
###########################
# add foldx outcome category
# and foldx scaled values
# This will enable to always have these variables available
# when calling for plots
###########################
#------------------------------
# adding foldx scaled values
# scale data b/w -1 and 1
#------------------------------
n = which(colnames(my_df) == "ddg"); n
my_min = min(my_df[,n]); my_min
my_max = max(my_df[,n]); my_max
my_df$foldx_scaled = ifelse(my_df[,n] < 0
, my_df[,n]/abs(my_min)
, my_df[,n]/my_max)
# sanity check
my_min = min(my_df$foldx_scaled); my_min
my_max = max(my_df$foldx_scaled); my_max
if (my_min == -1 && my_max == 1){
cat("\nPASS: foldx ddg successfully scaled b/w -1 and 1"
, "\nProceeding with assigning foldx outcome category")
}else{
cat("\nFAIL: could not scale foldx ddg values"
, "Aborting!")
}
#------------------------------
# adding foldx outcome category
# ddg<0 = "Stabilising" (-ve)
#------------------------------
c1 = table(my_df$ddg < 0)
my_df$foldx_outcome = ifelse(my_df$ddg < 0, "Stabilising", "Destabilising")
c2 = table(my_df$ddg < 0)
if ( all(c1 == c2) ){
cat("\nPASS: foldx outcome successfully created")
}else{
cat("\nFAIL: foldx outcome could not be created. Aborting!")
exit()
}
###########################
# extract unique mutation entries
###########################
# check for duplicate mutations
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
, "\nExtracting these..."))
dup_muts = my_df[duplicated(my_df$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
, "\nNo. of unique duplicate mutations:", dup_muts_nu
, "\n\nExtracting df with unique mutations only"))
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
}else{
cat(paste0("\nNo duplicate mutations detected"))
my_df_u = my_df
}
upos = unique(my_df_u$position)
cat("\nDim of clean df:"); cat(dim(my_df_u))
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
###########################
# extract mutations <10Angstroms and symbols
###########################
table(my_df_u$ligand_distance<mcsm_lig_cutoff)
my_df_u_lig = my_df_u[my_df_u$ligand_distance <mcsm_lig_cutoff,]
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10", angstroms_symbol, " of the ligand\n"))
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
}