155 lines
6.1 KiB
Python
Executable file
155 lines
6.1 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Aug 19 14:33:51 2020
|
|
|
|
@author: tanu
|
|
"""
|
|
#%% load packages
|
|
import os,sys
|
|
import subprocess
|
|
import argparse
|
|
import requests
|
|
import re
|
|
import time
|
|
from bs4 import BeautifulSoup
|
|
import pandas as pd
|
|
from pandas.api.types import is_string_dtype
|
|
from pandas.api.types import is_numeric_dtype
|
|
#%%============================================================================
|
|
host = 'http://biosig.unimelb.edu.au'
|
|
pred_dynamut_batch = '/dynamut/results_prediction/161287964015'
|
|
batch_result_url = host + pred_dynamut_batch
|
|
batch_result_url
|
|
|
|
# build a single url with a given mutation
|
|
result_id = re.search( r"([0-9]+)$", pred_dynamut_batch).group(0)
|
|
mut = 'S2C'
|
|
single_url = host + '/single_results/' + str(result_id)
|
|
single_result_url = host + '/single_results/' + str(result_id) + '/' + mut
|
|
print(single_result_url)
|
|
|
|
#%%============================================================================
|
|
param_dict = {}
|
|
|
|
result_response = requests.get(single_result_url)
|
|
if result_response.status_code == 200:
|
|
print('Fetching results')
|
|
# extract results using the html parser
|
|
soup = BeautifulSoup(result_response.text, features = 'html.parser')
|
|
#web_result_raw = soup.find(id = 'predictions').get_text()
|
|
ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text()
|
|
ddg_encom = soup.find(id = 'ddg_encom').get_text()
|
|
ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text()
|
|
ddg_sdm = soup.find(id = 'ddg_sdm').get_text()
|
|
ddg_duet = soup.find(id = 'ddg_duet').get_text()
|
|
dds_encom = soup.find(id = 'dds_encom').get_text()
|
|
|
|
param_dict = {"mutationinformation" : mut
|
|
, "ddg_dynamut" : ddg_dynamut
|
|
, "ddg_encom" : ddg_encom
|
|
, "ddg_mcsm" : ddg_mcsm
|
|
, "ddg_sdm" : ddg_sdm
|
|
, "ddg_duet" : ddg_duet
|
|
, "dds_encom" : dds_encom
|
|
|
|
}
|
|
results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T
|
|
|
|
print(results_df)
|
|
|
|
#%% looping over mutation
|
|
single_url = host + '/single_results/' + str(result_id)
|
|
muts = ["S2C", "S2F"]
|
|
|
|
# initilialise empty df
|
|
dynamut_results_df = pd.DataFrame()
|
|
|
|
for i, mut in enumerate(muts):
|
|
#param_dict = {}
|
|
print('Running mutation', i+1, ':', mut)
|
|
snp = mut
|
|
single_result_url = single_url + '/' + snp
|
|
print('Getting results from:', single_result_url)
|
|
|
|
result_response = requests.get(single_result_url)
|
|
if result_response.status_code == 200:
|
|
print('Fetching results')
|
|
# extract results using the html parser
|
|
soup = BeautifulSoup(result_response.text, features = 'html.parser')
|
|
#web_result_raw = soup.find(id = 'predictions').get_text()
|
|
ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text()
|
|
ddg_encom = soup.find(id = 'ddg_encom').get_text()
|
|
ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text()
|
|
ddg_sdm = soup.find(id = 'ddg_sdm').get_text()
|
|
ddg_duet = soup.find(id = 'ddg_duet').get_text()
|
|
dds_encom = soup.find(id = 'dds_encom').get_text()
|
|
|
|
param_dict = {"mutationinformation" : snp
|
|
, "ddg_dynamut" : ddg_dynamut
|
|
, "ddg_encom" : ddg_encom
|
|
, "ddg_mcsm" : ddg_mcsm
|
|
, "ddg_sdm" : ddg_sdm
|
|
, "ddg_duet" : ddg_duet
|
|
, "dds_encom" : dds_encom
|
|
}
|
|
results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T
|
|
print(results_df)
|
|
dynamut_results_df = dynamut_results_df.append(results_df)
|
|
print(dynamut_results_df)
|
|
|
|
#%% Derive the single url from the batch result itself
|
|
# get request from a batch url
|
|
# corresponding to href
|
|
batch_result_url
|
|
batch_response = requests.get(batch_result_url)
|
|
batch_soup = BeautifulSoup(batch_response.text, features = 'html.parser')
|
|
print(batch_soup)
|
|
#table = batch_soup.find('table', attrs = {'class':'table table-striped table-bordered table-responsive'})
|
|
#btn = batch_soup.find_all(href = True, attrs = {'class':'btn btn-default btn-sm'})
|
|
#print(btn)
|
|
|
|
|
|
# initilialise empty df
|
|
dynamut_results_df = pd.DataFrame()
|
|
for a in batch_soup.find_all('a', href=True, attrs = {'class':'btn btn-default btn-sm'}):
|
|
print ("Found the URL:", a['href'])
|
|
single_result_url = host + a['href']
|
|
snp = re.search(r'([A-Z]+[0-9]+[A-Z]+$)', single_result_url).group(0)
|
|
print(snp)
|
|
print('\nGetting results from:', single_result_url)
|
|
|
|
result_response = requests.get(single_result_url)
|
|
if result_response.status_code == 200:
|
|
print('\nFetching results for SNP:', snp)
|
|
# extract results using the html parser
|
|
soup = BeautifulSoup(result_response.text, features = 'html.parser')
|
|
#web_result_raw = soup.find(id = 'predictions').get_text()
|
|
ddg_dynamut = soup.find(id = 'ddg_dynamut').get_text()
|
|
ddg_encom = soup.find(id = 'ddg_encom').get_text()
|
|
ddg_mcsm = soup.find(id = 'ddg_mcsm').get_text()
|
|
ddg_sdm = soup.find(id = 'ddg_sdm').get_text()
|
|
ddg_duet = soup.find(id = 'ddg_duet').get_text()
|
|
dds_encom = soup.find(id = 'dds_encom').get_text()
|
|
|
|
param_dict = {"mutationinformation" : snp
|
|
, "ddg_dynamut" : ddg_dynamut
|
|
, "ddg_encom" : ddg_encom
|
|
, "ddg_mcsm" : ddg_mcsm
|
|
, "ddg_sdm" : ddg_sdm
|
|
, "ddg_duet" : ddg_duet
|
|
, "dds_encom" : dds_encom
|
|
}
|
|
results_df = pd.DataFrame.from_dict(param_dict, orient = "index").T
|
|
print(results_df)
|
|
dynamut_results_df = dynamut_results_df.append(results_df)
|
|
print(dynamut_results_df)
|
|
print('\nWriting dynamut results df')
|
|
dynamut_results_df.to_csv('test_dynamut.csv', index = False)
|
|
print('\nResults File:'
|
|
, '\nNo. of rows:', dynamut_results_df.shape[0]
|
|
, '\nNo. of cols:', dynamut_results_df.shape[1])
|
|
|
|
|
|
|
|
|