74 lines
3.1 KiB
Python
74 lines
3.1 KiB
Python
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Sat Jun 25 11:07:30 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
|
|
import sys, os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import re
|
|
###############################################################################
|
|
homedir = os.path.expanduser("~")
|
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
|
sys.path
|
|
###############################################################################
|
|
#====================
|
|
# Import ML functions
|
|
#====================
|
|
# from MultClfs import *
|
|
from GetMLData import *
|
|
#from SplitTTS import *
|
|
#%% Load all gene files #######################################################
|
|
# param dict
|
|
combined_model_paramD = {'data_combined_model' : True
|
|
, 'use_or' : False
|
|
, 'omit_all_genomic_features': False
|
|
, 'write_maskfile' : False
|
|
, 'write_outfile' : False }
|
|
|
|
pnca_df = getmldata('pncA', 'pyrazinamide' , **combined_model_paramD)
|
|
embb_df = getmldata('embB', 'ethambutol' , **combined_model_paramD)
|
|
katg_df = getmldata('katG', 'isoniazid' , **combined_model_paramD)
|
|
rpob_df = getmldata('rpoB', 'rifampicin' , **combined_model_paramD)
|
|
gid_df = getmldata('gid' , 'streptomycin' , **combined_model_paramD)
|
|
alr_df = getmldata('alr' , 'cycloserine' , **combined_model_paramD)
|
|
|
|
# quick check
|
|
foo = pd.concat([alr_df, pnca_df])
|
|
check1 = foo.filter(regex= '.*_affinity|gene_name|ligand_distance', axis = 1)
|
|
# So, pd.concat will join correctly but introduce NAs.
|
|
# TODO: discuss whether to make these 0 and use it or just omit
|
|
# For now I am omitting these i.e combining only on common columns
|
|
|
|
expected_nrows = len(pnca_df) + len(embb_df) + len(katg_df) + len(rpob_df) + len(gid_df) + len(alr_df)
|
|
|
|
# finding common columns
|
|
dfs_combine = [pnca_df, embb_df, katg_df, rpob_df, gid_df, alr_df]
|
|
common_cols = list(set.intersection(*(set(df.columns) for df in dfs_combine)))
|
|
expected_ncols = np.min([len(pnca_df.columns)] + [len(embb_df.columns)] + [len(katg_df.columns)] + [len(rpob_df.columns)] + [len(gid_df.columns)] + [len(alr_df.columns)])
|
|
expected_ncols
|
|
|
|
if len(common_cols) == expected_ncols:
|
|
print('\nProceeding to combine based on common cols (n):', len(common_cols))
|
|
combined_df = pd.concat([df[common_cols] for df in dfs_combine], ignore_index = False)
|
|
print('\nSuccessfully combined dfs:'
|
|
, '\nNo. of dfs combined:', len(dfs_combine)
|
|
, '\nDim of combined df:', combined_df.shape)
|
|
else:
|
|
print('\nFAIL: could not combine dfs, length mismatch'
|
|
, '\nExpected ncols:', expected_ncols
|
|
, '\nGot:', len(common_cols))
|
|
|
|
colnames_combined_df = combined_df.columns
|
|
if 'gene_name' in colnames_combined_df:
|
|
print("\nGene name included")
|
|
else:
|
|
('\nGene name NOT included')
|
|
|
|
|
|
omit_gene_alr = ['alr']
|
|
cm_input_df5 = combined_df[~combined_df['gene_name'].isin(omit_gene_alr)]
|
|
##############################################################################
|