LSHTM_analysis/scripts/plotting/replaceBfactor_pdb.R

318 lines
8.6 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: Replace B-factors in the pdb file with the mean
# normalised stability values.
# read pdb file
# make two copies so you can replace B factors for 1)duet
# 2)affinity values and output 2 separate pdbs for
# rendering on chimera
# read mcsm mean stability value files
# extract the respecitve mean values and assign to the
# b-factor column within their respective pdbs
# generate some distribution plots for inspection
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
cat(c(getwd(),"\n"))
#source("Header_TT.R")
library(bio3d)
require("getopt", quietly = TRUE) # cmd parse arguments
#========================================================
# command line args
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
drug = opt$drug
gene = opt$gene
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#========================================================
#%% variable assignment: input and output paths & filenames
drug = "pyrazinamide"
gene = "pncA"
gene_match = paste0(gene,"_p.")
cat(gene_match)
#=============
# directories
#=============
datadir = paste0("~/git/Data")
indir = paste0(datadir, "/", drug, "/input")
outdir = paste0("~/git/Data", "/", drug, "/output")
#======
# input
#======
in_filename_pdb = paste0(tolower(gene), "_complex.pdb")
infile_pdb = paste0(indir, "/", in_filename_pdb)
cat(paste0("Input file:", infile_pdb) )
in_filename_mean_stability = paste0(tolower(gene), "_mean_stability.csv")
infile_mean_stability = paste0(outdir, "/", in_filename_mean_stability)
cat(paste0("Input file:", infile_mean_stability) )
#=======
# output
#=======
out_filename_duet_mspdb = paste0(tolower(gene), "_complex_b_duetms.pdb")
outfile_duet_mspdb = paste0(outdir, "/", out_filename_duet_mspdb)
print(paste0("Output file:", outfile_duet_mspdb))
out_filename_lig_mspdb = paste0(tolower(gene), "_complex_b_ligms.pdb")
outfile_lig_mspdb = paste0(outdir, "/", out_filename_lig_mspdb)
print(paste0("Output file:", outfile_lig_mspdb))
#%%===============================================================
###########################
# Read file: average stability values
# or mcsm_normalised file
###########################
my_df <- read.csv(infile_mean_stability, header = T)
str(my_df)
#############
# Read pdb
#############
# list of 8
my_pdb = read.pdb(infile_pdb
, maxlines = -1
, multi = FALSE
, rm.insert = FALSE
, rm.alt = TRUE
, ATOM.only = FALSE
, hex = FALSE
, verbose = TRUE)
rm(in_filename_mean_stability, in_filename_pdb)
# assign separately for duet and ligand
my_pdb_duet = my_pdb
my_pdb_lig = my_pdb
#=========================================================
# Replacing B factor with mean stability scores
# within the respective dfs
#==========================================================
# extract atom list into a variable
# since in the list this corresponds to data frame, variable will be a df
df_duet = my_pdb_duet[[1]]
df_lig = my_pdb_lig[[1]]
# make a copy: required for downstream sanity checks
d2_duet = df_duet
d2_lig = df_lig
# sanity checks: B factor
max(df_duet$b); min(df_duet$b)
max(df_lig$b); min(df_lig$b)
#*******************************************
# histograms and density plots for inspection
# 1: original B-factors
# 2: original mean stability values
# 3: replaced B-factors with mean stability values
#*********************************************
# Set the margin on all sides
par(oma = c(3,2,3,0)
, mar = c(1,3,5,2)
#, mfrow = c(3,2)
, mfrow = c(3,4))
#************
# Row 1 plots: original B-factors
# duet and affinity
#************
hist(df_duet$b
, xlab = ""
, main = "Bfactor duet")
plot(density(df_duet$b)
, xlab = ""
, main = "Bfactor duet")
hist(df_lig$b
, xlab = ""
, main = "Bfactor affinity")
plot(density(df_lig$b)
, xlab = ""
, main = "Bfactor affinity")
#************
# Row 2 plots: original mean stability values
# duet and affinity
#************
hist(my_df$average_duet_scaled
, xlab = ""
, main = "mean duet scaled")
plot(density(my_df$average_duet_scaled)
, xlab = ""
, main = "mean duet scaled")
hist(my_df$average_affinity_scaled
, xlab = ""
, main = "mean affinity scaled")
plot(density(my_df$average_affinity_scaled)
, xlab = ""
, main = "mean affinity scaled")
#************
# Row 3 plots: replaced B-factors with mean stability values
# After actual replacement in the b factor column
#*************
#=========================================================
#=========
# step 0_P1: DONT RUN once you have double checked the matched output
#=========
# sanity check: match and assign to a separate column to double check
# colnames(my_df)
# df_duet$duet_scaled = my_df$averge_duet_scaled[match(df_duet$resno, my_df$position)]
#=========
# step 1_P1
#=========
# Be brave and replace in place now (don"t run sanity check)
# this makes all the B-factor values in the non-matched positions as NA
df_duet$b = my_df$average_duet_scaled[match(df_duet$resno, my_df$position)]
df_lig$b = my_df$average_affinity_scaled[match(df_lig$resno, my_df$position)]
#=========
# step 2_P1
#=========
# count NA in Bfactor
b_na_duet = sum(is.na(df_duet$b)) ; b_na_duet
b_na_lig = sum(is.na(df_lig$b)) ; b_na_lig
# count number of 0"s in Bactor
sum(df_duet$b == 0)
sum(df_lig$b == 0)
# replace all NA in b factor with 0
df_duet$b[is.na(df_duet$b)] = 0
df_lig$b[is.na(df_lig$b)] = 0
# sanity check: should be 0 and True
# duet
if (sum(df_duet$b == 0) == b_na_duet){
print ("PASS: NA"s replaced with 0"s successfully in df_duet")
} else {
print("FAIL: NA replacement in df_duet NOT successful")
quit()
}
max(df_duet$b); min(df_duet$b)
# lig
if (sum(df_lig$b == 0) == b_na_lig){
print ("PASS: NA"s replaced with 0"s successfully df_lig")
} else {
print("FAIL: NA replacement in df_lig NOT successful")
quit()
}
max(df_lig$b); min(df_lig$b)
# sanity checks: should be True
if( (max(df_duet$b) == max(my_df$average_duet_scaled)) & (min(df_duet$b) == min(my_df$average_duet_scaled)) ){
print("PASS: B-factors replaced correctly in df_duet")
} else {
print ("FAIL: To replace B-factors in df_duet")
quit()
}
if( (max(df_lig$b) == max(my_df$average_affinity_scaled)) & (min(df_lig$b) == min(my_df$average_affinity_scaled)) ){
print("PASS: B-factors replaced correctly in lig_duet")
} else {
print ("FAIL: To replace B-factors in lig_duet")
quit()
}
#=========
# step 3_P1
#=========
# sanity check: dim should be same before reassignment
if ( (dim(df_duet)[1] == dim(d2_duet)[1]) & (dim(df_lig)[1] == dim(d2_lig)[1]) &
(dim(df_duet)[2] == dim(d2_duet)[2]) & (dim(df_lig)[2] == dim(d2_lig)[2])
){
print("PASS: Dims of both dfs as expected")
} else {
print ("FAIL: Dims mismatch")
quit()}
#=========
# step 4_P1:
# VERY important
#=========
# assign it back to the pdb file
my_pdb_duet[[1]] = df_duet
max(df_duet$b); min(df_duet$b)
my_pdb_lig[[1]] = df_lig
max(df_lig$b); min(df_lig$b)
#=========
# step 5_P1
#=========
cat(paste0("output file duet mean stability pdb:", outfile_duet_mspdb))
write.pdb(my_pdb_duet, outfile_duet_mspdb)
cat(paste0("output file ligand mean stability pdb:", outfile_lig_mspdb))
write.pdb(my_pdb_lig, outfile_lig_mspdb)
#********************************
# Add the 3rd histogram and density plots for comparisons
#********************************
# Plots continued...
# Row 3 plots: hist and density of replaced B-factors with stability values
hist(df_duet$b
, xlab = ""
, main = "repalcedB duet")
plot(density(df_duet$b)
, xlab = ""
, main = "replacedB duet")
hist(df_lig$b
, xlab = ""
, main = "repalcedB affinity")
plot(density(df_lig$b)
, xlab = ""
, main = "replacedB affinity")
# graph titles
mtext(text = "Frequency"
, side = 2
, line = 0
, outer = TRUE)
mtext(text = "stability distribution"
, side = 3
, line = 0
, outer = TRUE)
#********************************
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# NOTE: This replaced B-factor distribution has the same
# x-axis as the PredAff normalised values, but the distribution
# is affected since 0 is overinflated. This is because all the positions
# where there are no SNPs have been assigned 0???
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!