475 lines
18 KiB
Python
Executable file
475 lines
18 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Jun 10 11:13:49 2020
|
|
|
|
@author: tanu
|
|
"""
|
|
#=======================================================================
|
|
#%% useful links
|
|
#https://chrisalbon.com/python/data_wrangling/pandas_join_merge_dataframe/
|
|
#https://kanoki.org/2019/11/12/how-to-use-regex-in-pandas/
|
|
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
|
|
#=======================================================================
|
|
#%% specify dirs
|
|
import os, sys
|
|
import pandas as pd
|
|
import numpy as np
|
|
import re
|
|
import argparse
|
|
|
|
homedir = os.path.expanduser('~')
|
|
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
|
# local import
|
|
from find_missense import find_missense
|
|
#=======================================================================
|
|
#%% command line args
|
|
arg_parser = argparse.ArgumentParser()
|
|
|
|
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = None)
|
|
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = None)
|
|
|
|
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
|
|
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
|
|
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
|
|
|
|
# FIXME: remove defaults
|
|
arg_parser.add_argument('-sc', '--start_coord', help = 'start of coding region (cds) of gene', default = None, type = int) # pnca cds
|
|
arg_parser.add_argument('-ec', '--end_coord', help = 'end of coding region (cds) of gene', default = None, type = int) # pnca cds
|
|
|
|
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
|
|
|
|
args = arg_parser.parse_args()
|
|
#=======================================================================
|
|
#%% variables
|
|
#gene = 'pncA'
|
|
#drug = 'pyrazinamide'
|
|
#start_cds = 2288681
|
|
#end_cds = 2289241
|
|
|
|
# cmd variables
|
|
gene = args.gene
|
|
drug = args.drug
|
|
gene_match = gene + '_p.'
|
|
|
|
datadir = args.datadir
|
|
indir = args.input_dir
|
|
outdir = args.output_dir
|
|
|
|
start_cds = args.start_coord
|
|
end_cds = args.end_coord
|
|
|
|
#%%=======================================================================
|
|
#==============
|
|
# directories
|
|
#==============
|
|
if not datadir:
|
|
datadir = homedir + '/' + 'git/Data'
|
|
|
|
if not indir:
|
|
indir = datadir + '/' + drug + '/input'
|
|
|
|
if not outdir:
|
|
outdir = datadir + '/' + drug + '/output'
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
info_filename = 'snp_info.txt'
|
|
snp_info = datadir + '/' + info_filename
|
|
print('Info file: ', snp_info
|
|
, '\n============================================================')
|
|
|
|
#gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.txt' # without headers
|
|
gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.csv'
|
|
gene_info = indir + '/' + gene_info_filename
|
|
print('gene info file: ', gene_info
|
|
, '\n============================================================')
|
|
|
|
|
|
in_filename_or = 'ns'+ gene.lower()+ '_assoc.txt'
|
|
gene_or = indir + '/' + in_filename_or
|
|
print('gene OR file: ', gene_or
|
|
, '\n============================================================')
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
gene_or_filename = gene.lower() + '_af_or_kinship.csv' # other one is called AFandOR
|
|
outfile_or_kin = outdir + '/' + gene_or_filename
|
|
print('Output file: ', outfile_or_kin
|
|
, '\n============================================================')
|
|
|
|
#%% read files: preformatted using bash
|
|
# or file: '...assoc.txt'
|
|
# FIXME: call bash script from here
|
|
|
|
or_df = pd.read_csv(gene_or, sep = '\t', header = 0, index_col = False) # 182, 12 (without filtering for missense muts, it was 212 i.e we 30 muts weren't missense)
|
|
or_df.head()
|
|
or_df.columns
|
|
#%% snp_info file: master and gene specific ones
|
|
|
|
# gene info
|
|
#info_df2 = pd.read_csv('nssnp_info_pnca.txt', sep = '\t', header = 0) #303, 10
|
|
info_df2 = pd.read_csv(gene_info, sep = ',', header = 0) #303, 10
|
|
mis_mut_cover = (info_df2['chromosome_number'].nunique()/info_df2['chromosome_number'].count()) * 100
|
|
print('*****RESULT*****'
|
|
, '\nPercentage of missense mut in pncA:', mis_mut_cover
|
|
, '\n*****RESULT*****') #65.7%
|
|
|
|
# large file
|
|
#info_df = pd.read_csv('snp_info.txt', sep = '\t', header = None) #12010
|
|
info_df = pd.read_csv(snp_info, sep = '\t') #12010
|
|
info_df.columns
|
|
#info_df.columns = ['chromosome_number', 'ref_allele', 'alt_allele', 'snp_info'] #12009, 4
|
|
|
|
info_df['chromosome_number'].nunique() #10257
|
|
mut_cover = (info_df['chromosome_number'].nunique()/info_df['chromosome_number'].count()) * 100
|
|
print('*****RESULT*****'
|
|
,'\nPercentage of mutations in pncA:', mut_cover
|
|
, '\n*****RESULT*****') #85.4%
|
|
|
|
# extract unique chr position numbers
|
|
genomic_pos = info_df['chromosome_number'].unique()
|
|
genomic_pos_df = pd.DataFrame(genomic_pos, columns = ['chr_pos'])
|
|
genomic_pos_df.dtypes
|
|
|
|
genomic_pos_min = info_df['chromosome_number'].min()
|
|
genomic_pos_max = info_df['chromosome_number'].max()
|
|
|
|
# genomic coord for pnca coding region
|
|
cds_len = (end_cds-start_cds) + 1
|
|
pred_prot_len = (cds_len/3) - 1
|
|
|
|
# mindblowing: difference b/w bitwise (&) and 'and'
|
|
# DO NOT want &: is this bit set to '1' in both variables? Is this what you want?
|
|
#if (genomic_pos_min <= start_cds) & (genomic_pos_max >= end_cds):
|
|
print('*****RESULT*****'
|
|
, '\nlength of coding region:', cds_len, 'bp'
|
|
, '\npredicted protein length:', pred_prot_len, 'aa'
|
|
, '\n*****RESULT*****')
|
|
|
|
if genomic_pos_min <= start_cds and genomic_pos_max >= end_cds:
|
|
print ('PASS: coding region for gene included in snp_info.txt')
|
|
else:
|
|
sys.exit('FAIL: coding region for gene not included in info file snp_info.txt')
|
|
|
|
#%% Extracting ref allele and alt allele as single letters
|
|
# info_df has some of these params as more than a single letter, which means that
|
|
# when you try to merge ONLY using chromosome_number, then it messes up... and is WRONG.
|
|
# Hence the merge needs to be performed on a unique set of attributes which in our case
|
|
# would be chromosome_number, ref_allele and alt_allele
|
|
|
|
df_ncols = len(or_df.columns)
|
|
print('Dim of df:',or_df.shape
|
|
, '\nExtracting missense muts as single letters')
|
|
|
|
#find_missense(or_df, 'ref_allele1', 'alt_allele0')
|
|
# adds columns to df passed
|
|
find_missense(or_df, ref_allele_column = 'ref_allele1', alt_allele_column = 'alt_allele0')
|
|
|
|
print('Dim of revised df:', or_df.shape, ' after extraction of missense muts')
|
|
|
|
# FIXME: import this from function
|
|
ncols_from_func = 4
|
|
if or_df.shape[1] == df_ncols + ncols_from_func:
|
|
print('PASS: Succesfuly extracted ref and alt alleles for missense muts')
|
|
else:
|
|
print('FAIL: No. of cols mismatch'
|
|
,'\nOriginal length:', df_ncols
|
|
, '\nExpected no. of cols:', df_ncols + ncols_from_func
|
|
, '\nGot:', or_df.shape[1]
|
|
, '\nCheck hardcoded value of ncols_add?')
|
|
sys.exit()
|
|
|
|
del(df_ncols, ncols_from_func)
|
|
|
|
#%% TRY MERGE
|
|
# check dtypes
|
|
or_df.dtypes
|
|
info_df.dtypes
|
|
#or_df.info()
|
|
|
|
# pandas documentation where it mentions: "Pandas uses the object dtype for storing strings"
|
|
# check how many unique chr_num in info_df are in or_df
|
|
genomic_pos_df['chr_pos'].isin(or_df['chromosome_number']).sum() #144
|
|
|
|
# check how many chr_num in or_df are in info_df: should be ALL of them
|
|
or_df['chromosome_number'].isin(genomic_pos_df['chr_pos']).sum() #182
|
|
|
|
# sanity check 2
|
|
if or_df['chromosome_number'].isin(genomic_pos_df['chr_pos']).sum() == len(or_df):
|
|
print('PASS: all genomic locs in or_df have meta datain info.txt')
|
|
else:
|
|
sys.exit('FAIL: some genomic locs or_df chr number DO NOT have meta data in snp_info.txt')
|
|
#%% perform merge
|
|
|
|
#my_join = 'inner'
|
|
#my_join = 'outer'
|
|
my_join = 'left'
|
|
#my_join = 'right'
|
|
|
|
merging_cols = ['chromosome_number', 'ref_allele', 'alt_allele']
|
|
|
|
print('Merging 2 dfs: or_df and info_df using join type:', my_join
|
|
, '\nColumns to merge on:', merging_cols
|
|
, '\n=================================================')
|
|
#dfm1 = pd.merge(or_df, info_df, on ='chromosome_number', how = my_join, indicator = True) # not unique!
|
|
dfm1 = pd.merge(or_df, info_df, on = merging_cols, how = my_join, indicator = True)
|
|
dfm1['_merge'].value_counts()
|
|
# count no. of missense mutations ONLY
|
|
print('Expected no. of missense mutations:', dfm1.snp_info.str.count(r'(missense.*)').sum())
|
|
|
|
# Merge with info_df2 has this has extra columns due to bash preformatting
|
|
# These extra columns are just 'snp_info' column split on '|'
|
|
print('Merging with info_df2 as it has,', len(set(info_df2.columns).difference(info_df.columns))
|
|
, 'extra columns relevant for downstream analyses:\n\n'
|
|
, set(info_df2.columns).difference(info_df.columns))
|
|
|
|
dfm2 = pd.merge(or_df, info_df2, on = merging_cols, how = my_join, indicator = True)
|
|
dfm2['_merge'].value_counts()
|
|
|
|
# count no. of nan
|
|
print('No. of NA in dfm2:', dfm2['mut_type'].isna().sum())
|
|
|
|
# drop nan from dfm2_mis
|
|
dfm2_mis = dfm2[dfm2['mut_type'].notnull()]
|
|
|
|
#%% sanity check
|
|
# count no. of missense muts
|
|
|
|
#if len(dfm1) - dfm1.snp_info.str.count(r'(missense.*)').sum() == dfm2['mut_type'].isna().sum():
|
|
if dfm2_mis.shape[0] == dfm1.snp_info.str.count(r'(missense.*)').sum():
|
|
print('PASSED: numbers cross checked'
|
|
, '\nTotal no. of missense mutations:', dfm1.snp_info.str.count(r'(missense.*)').sum()
|
|
, '\nNo. of mutations falsely assumed to be missense:', len(dfm1) - dfm1.snp_info.str.count(r'(missense.*)').sum())
|
|
else:
|
|
print('FAIL: numbers mismatch'
|
|
, '\Expected no. of rows:',dfm1.snp_info.str.count(r'(missense.*)').sum()
|
|
, '\nGot:', dfm2_mis.shape[0]
|
|
, '\nExpected no. of cols:', dfm1.shape[1] + len(set(info_df2.columns).difference(info_df.columns))-1)
|
|
|
|
# two ways to filter to get only missense muts
|
|
test = dfm1[dfm1['snp_info'].str.count('missense.*')>0]
|
|
dfm1_mis = dfm1[dfm1['snp_info'].str.match('(missense.*)') == True]
|
|
test.equals(dfm1_mis)
|
|
|
|
if dfm1_mis[['chromosome_number', 'ref_allele', 'alt_allele']].equals(dfm2_mis[['chromosome_number', 'ref_allele', 'alt_allele']]):
|
|
print('PASS: Further cross checks successful')
|
|
else:
|
|
sys.exit('FAIL: Second cross check unsuccessful!')
|
|
|
|
del(test, dfm1_mis)
|
|
|
|
#%% extract mut info into three cols
|
|
df_ncols = len(dfm2_mis.columns)
|
|
print('Dim of df to add cols to:', dfm2_mis.shape)
|
|
|
|
# column names already present, wrap this in a if and perform sanity check
|
|
ncols_add = 0
|
|
if not 'wild_type' in dfm2_mis.columns:
|
|
print('Extracting and adding column: wild_type'
|
|
, '\n===============================================================')
|
|
dfm2_mis['wild_type'] = dfm2_mis['mut_info'].str.extract('(\w{1})>')
|
|
ncols_add+=1
|
|
|
|
if not 'position' in dfm2_mis.columns:
|
|
print('Extracting and adding column: position'
|
|
, '\n===============================================================')
|
|
dfm2_mis['position'] = dfm2_mis['mut_info'].str.extract('(\d+)')
|
|
ncols_add+=1
|
|
|
|
if not 'mutant_type' in dfm2_mis.columns:
|
|
print('Extracting and adding column: mutant_type'
|
|
, '\n================================================================')
|
|
dfm2_mis['mutant_type'] = dfm2_mis['mut_info'].str.extract('>\d+(\w{1})')
|
|
ncols_add+=1
|
|
|
|
if not 'mutationinformation' in dfm2_mis.columns:
|
|
print('combining to create column: mutationinformation'
|
|
, '\n===============================================================')
|
|
dfm2_mis['mutationinformation'] = dfm2_mis['wild_type'] + dfm2_mis['position'] + dfm2_mis['mutant_type']
|
|
ncols_add+=1
|
|
|
|
print('No. of cols added:', ncols_add)
|
|
|
|
if len(dfm2_mis.columns) == df_ncols + ncols_add:
|
|
print('PASS: mcsm style muts present in df'
|
|
, '\n===============================================================')
|
|
else:
|
|
print('FAIL: No. of cols mismatch'
|
|
,'\nOriginal length:', df_ncols
|
|
, '\nExpected no. of cols:', df_ncols + ncols_add
|
|
, '\nGot:', len(dfm2_mis.columns))
|
|
sys.exit()
|
|
|
|
del(df_ncols, ncols_add)
|
|
#%% Calculating OR from beta coeff
|
|
print('Calculating OR...')
|
|
df_ncols = dfm2_mis.shape[1]
|
|
print('No. of cols pre-formatting data:', df_ncols
|
|
, '\n===================================================================')
|
|
|
|
#1) Add column: OR for kinship calculated from beta coef
|
|
ncols_add = 0
|
|
if not 'or_kin' in dfm2_mis.columns:
|
|
#dfm2_mis['or_kin'] = np.exp(dfm2_mis['beta']) # gives copy warning
|
|
dfm2_mis.loc[:,'or_kin'] = np.exp(dfm2_mis.loc[:,'beta'])
|
|
|
|
print(dfm2_mis['or_kin'].head())
|
|
ncols_add+=1
|
|
print('Calculating OR from beta coeff by exponent function and adding column:'
|
|
, '\nNo. of cols added:', ncols_add
|
|
, '\n', dfm2_mis['beta'].head()
|
|
, '\nNo. of cols after adding OR_kin:', len(dfm2_mis.columns)
|
|
, '\n===================================================================')
|
|
|
|
if dfm2_mis.shape[1] == df_ncols + ncols_add:
|
|
print('PASS: Dimension of df match'
|
|
, '\nDim of df:', dfm2_mis.shape
|
|
, '\n================================================================')
|
|
else:
|
|
print('FAIL: Dim mismatch'
|
|
, '\nOriginal no. of cols:', df_ncols
|
|
, '\nExpected no. of cols:', df_ncols + ncols_add
|
|
, '\nGot:', dfm2_mis.shape[1])
|
|
sys.exit()
|
|
|
|
#2) rename columns to reflect that it is coming from kinship matrix adjustment
|
|
dfm2_mis.rename(columns = {'af': 'af_kin'
|
|
, 'beta': 'beta_kin'
|
|
, 'p_wald': 'pwald_kin'
|
|
, 'se': 'se_kin', 'logl_H1': 'logl_H1_kin'
|
|
, 'l_remle': 'l_remle_kin'
|
|
, 'ref_allele1': 'reference_allele'}, inplace = True)
|
|
del(df_ncols, ncols_add)
|
|
#%%==============================!!!!!!!=======================================
|
|
# FIXME: should be at source
|
|
# checking tot_diff column
|
|
#print((dfm2_mis['tot_diff']==1).all()) and remove these cols
|
|
#%%==============================!!!!!!!=======================================
|
|
#3) drop some not required cols (including duplicate if you want)
|
|
#3a) drop duplicate columns
|
|
dfm2_mis2 = dfm2_mis.T.drop_duplicates().T #changes dtypes in cols, so not used
|
|
dup_cols = set(dfm2_mis.columns).difference(dfm2_mis2.columns)
|
|
print('Total no of duplicate columns:', len(dup_cols)
|
|
, '\nDuplicate columns identified:', dup_cols
|
|
, '\n===================================================================')
|
|
#dup_cols = {'alt_allele0', 'ps'} # didn't want to remove tot_diff
|
|
|
|
#print('removing duplicate columns: kept one of the dup_cols i.e tot_diff')
|
|
df_ncols = dfm2_mis.shape[1]
|
|
|
|
print('Removing duplicate columns'
|
|
, '\nOriginal dim:', dfm2_mis.shape)
|
|
dfm2_mis.drop(list(dup_cols), axis = 1, inplace = True)
|
|
|
|
if dfm2_mis.shape[1] == df_ncols - len(dup_cols):
|
|
print('PASS: Dimensions match'
|
|
, '\nDim:', dfm2_mis.shape
|
|
, '\nRemoved', len(dup_cols), 'columns from' , df_ncols
|
|
, '\n===============================================================')
|
|
else:
|
|
print('FAIL: Dimensions mismatch'
|
|
, '\nOriginal no. of cols:', df_ncols
|
|
, '\nNo. of cols to drop:', len(dup_cols)
|
|
, '\nExpected:', df_ncols - len(dup_cols)
|
|
, '\nGot:', dfm2_mis.shape[1])
|
|
sys.exit()
|
|
|
|
del(df_ncols)
|
|
|
|
#3b) other not useful columns
|
|
cols_to_drop = ['chromosome_text', 'n_diff', 'chr', 'symbol', '_merge' ]
|
|
df_ncols = dfm2_mis.shape[1]
|
|
dfm2_mis.drop(cols_to_drop, axis = 1, inplace = True)
|
|
#dfm2_mis.rename(columns = {'ref_allele1': 'reference_allele'}, inplace = True)
|
|
|
|
if dfm2_mis.shape[1] == df_ncols - len(cols_to_drop):
|
|
print('PASS:', len(cols_to_drop), 'columns successfully dropped'
|
|
, '\nDim:', dfm2_mis.shape
|
|
, '\nRemoved', len(cols_to_drop), 'columns from', df_ncols
|
|
, '\nDim after dropping', len(cols_to_drop), 'columns:', dfm2_mis.shape
|
|
, '\n===========================================')
|
|
else:
|
|
print('FAIL: Dimensions mismatch'
|
|
, '\nOriginal no. of cols:', df_ncols
|
|
, '\nExpected:', df_ncols - len(cols_to_drop)
|
|
, '\nGot:', dfm2_mis.shape[1])
|
|
sys.exit()
|
|
|
|
del(df_ncols)
|
|
#%%=====================================================================
|
|
#4) reorder columnn
|
|
print('Reordering', dfm2_mis.shape[1], 'columns'
|
|
, '\n===============================================')
|
|
|
|
column_order = ['mutation',
|
|
'mutationinformation',
|
|
'wild_type',
|
|
'position',
|
|
'mutant_type',
|
|
'chr_num_allele',
|
|
'ref_allele',
|
|
'alt_allele',
|
|
'mut_info',
|
|
'mut_type',
|
|
'gene_id',
|
|
'gene_number',
|
|
'mut_region',
|
|
'reference_allele',
|
|
'alternate_allele',
|
|
'chromosome_number',
|
|
#'afs
|
|
'af_kin',
|
|
'or_kin',
|
|
# 'ors_logistic',
|
|
# 'ors_chi_cus',
|
|
# 'ors_fisher',
|
|
'pwald_kin',
|
|
# 'pvals_logistic',
|
|
# 'pvals_fisher',
|
|
# 'ci_lb_fisher',
|
|
# 'ci_ub_fisher' ,
|
|
'beta_kin',
|
|
'se_kin',
|
|
'logl_H1_kin',
|
|
'l_remle_kin',
|
|
# 'stat_chi',
|
|
# 'pvals_chi',
|
|
# 'n_diff',
|
|
# 'tot_diff',
|
|
'n_miss',
|
|
'wt_3let',
|
|
'mt_3let']
|
|
|
|
if len(column_order) == dfm2_mis.shape[1]:
|
|
print('PASS: Column order generated for', len(column_order), 'columns'
|
|
, '\nApplying column order to df...' )
|
|
orkin_linked = dfm2_mis[column_order]
|
|
else:
|
|
print('FAIL: Mismatch in no. of cols to reorder'
|
|
, '\nNo. of cols in df to reorder:', dfm2_mis.shape[1]
|
|
, '\nOrder generated for:', len(column_order), 'columns'
|
|
, '\n', dfm2_mis.shape[1], 'should match', len(column_order))
|
|
sys.exit()
|
|
|
|
# sanity check after reassigning columns
|
|
if orkin_linked.shape == dfm2_mis.shape and set(orkin_linked.columns) == set(dfm2_mis.columns):
|
|
print('PASS: Successfully formatted df with rearranged columns')
|
|
else:
|
|
sys.exit('FAIL: something went wrong when rearranging columns!')
|
|
|
|
#%% write file
|
|
print('\n====================================================================='
|
|
, '\nWriting output file:\n', outfile_or_kin
|
|
, '\nNo. of rows:', len(dfm2_mis)
|
|
, '\nNo. of cols:', len(dfm2_mis.columns))
|
|
orkin_linked.to_csv(outfile_or_kin, index = False)
|
|
|
|
#%% diff b/w allele0 and 1: or_df
|
|
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
|
|
#df = or_df.iloc[[5, 15, 17, 19, 34]]
|
|
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
|
|
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
|
|
|