LSHTM_analysis/scripts/data_extraction.py

1010 lines
No EOL
44 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
@author: tanu
'''
#%% Description
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info?
# FIXME: import dirs.py to get the basic dir paths available
#=======================================================================
# TASK: extract ALL <gene> matched mutations from GWAS data
# Input data file has the following format: each row = unique sample id
# id,country,lineage,sublineage,drtype,drug,dr_muts_col,other_muts_col...
# 0,sampleID,USA,lineage2,lineage2.2.1,Drug-resistant,0.0,WT,gene_match<wt>POS<mut>; pncA_c.<wt>POS<mut>...
# where multiple mutations and multiple mutation types are separated by ';'.
# We are interested in the protein coding region i.e mutation with the<gene>_'p.' format.
# This script splits the mutations on the ';' and extracts protein coding muts only
# where each row is a separate mutation
# sample ids AND mutations are NOT unique, but the COMBINATION (sample id + mutation) = unique
# output files: all lower case
# 1) <gene>_gwas.csv
# 2) <gene>_common_ids.csv
# 3) <gene>_ambiguous_muts.csv
# 4) <gene>_mcsm_formatted_snps.csv
# 5) <gene>_metadata_poscounts.csv
# 6) <gene>_metadata.csv
# 7) <gene>_all_muts_msa.csv
# 8) <gene>_mutational_positons.csv
#------------
# NOTE
#-----------
# drtype is renamed to 'resistance' in the 35k dataset
# all colnames in the ouput files lowercase
#-------------
# requires
#-------------
#reference_dict.py
#tidy_split.py
# bash counting for cross checks: example
#grep -oP 'pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3}' mtb_gwas_meta_v6.csv | sort | uniq -c | wc -l
#=======================================================================
#%% load libraries
import os, sys
import re
import pandas as pd
import numpy as np
import argparse
from statistics import mean, median, mode
from statistics import multimode
# adding values for common keys
import itertools
import collections
#=======================================================================
#%% dir and local imports
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name (case sensitive)', default = None)
arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = None)
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
arg_parser.add_argument('-m', '--make_dirs', help = 'Make dir for input and output', action='store_true')
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
###############################################################################
#%% variable assignment: input and output paths & filenames
drug = args.drug
gene = args.gene
datadir = args.datadir
indir = args.input_dir
outdir = args.output_dir
make_dirs = args.make_dirs
###############################################################################
#%% variable assignment: input and output dirs and files
#=======
# dirs
#=======
if not datadir:
datadir = homedir + '/' + 'git/Data'
if not indir:
indir = datadir + '/' + drug + '/input_v2'
if not outdir:
outdir = datadir + '/' + drug + '/output_v2'
if make_dirs:
print('make_dirs is turned on, creating data dir:', datadir)
try:
os.makedirs(datadir, exist_ok = True)
print("Directory '%s' created successfully" %datadir)
except OSError as error:
print("Directory '%s' can not be created")
print('make_dirs is turned on, creating indir:', indir)
try:
os.makedirs(indir, exist_ok = True)
print("Directory '%s' created successfully" %indir)
except OSError as error:
print("Directory '%s' can not be created")
print('make_dirs is turned on, creating outdir:', outdir)
try:
os.makedirs(outdir, exist_ok = True)
print("Directory '%s' created successfully" %outdir)
except OSError as error:
print("Directory '%s' can not be created")
# handle missing dirs here
if not os.path.isdir(datadir):
print('ERROR: Data directory does not exist:', datadir
, '\nPlease create and ensure gwas data is present and then rerun\nelse specify cmd option --make_dirs')
sys.exit()
if not os.path.isdir(indir):
print('ERROR: Input directory does not exist:', indir
, '\nPlease either create or specify indir and rerun\nelse specify cmd option --make_dirs')
sys.exit()
if not os.path.isdir(outdir):
print('ERROR: Output directory does not exist:', outdir
, '\nPlease create or specify outdir and rerun\nelse specify cmd option --make_dirs')
sys.exit()
###############################################################################
#%% required local imports
from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
from tidy_split import tidy_split
###############################################################################
#%% creating required variables: gene and drug dependent, and input filename
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
nssnp_match = gene_match +'[A-Za-z]{3}[0-9]+[A-Za-z]{3}'
print('nsSNP for gene', gene, ':', nssnp_match)
nssnp_match_captureG = "(" + nssnp_match + ")"
wt_regex = gene_match.lower()+'([A-Za-z]{3})'
print('wt regex:', wt_regex)
mut_regex = r'[0-9]+(\w{3})$'
print('mt regex:', mut_regex)
pos_regex = r'([0-9]+)'
print('position regex:', pos_regex)
# building cols to extract
dr_muts_col = 'dr_mutations_' + drug
other_muts_col = 'other_mutations_' + drug
resistance_col = 'drtype'
print('Extracting columns based on variables:\n'
, drug
, '\n'
, dr_muts_col
, '\n'
, other_muts_col
, '\n'
, resistance_col
, '\n===============================================================')
#=======
# input
#=======
#in_filename_master_master = 'original_tanushree_data_v2.csv' #19k
in_filename_master = 'mtb_gwas_meta_v6.csv' #35k
infile_master = datadir + '/' + in_filename_master
print('Input file: ', infile_master
, '\n============================================================')
#=======
# output
#=======
# several output files: in respective sections at the time of outputting files
print('Output filename: in the respective sections'
, '\nOutput path: ', outdir
, '\n=============================================================')
#end of variable assignment for input and output files
###############################################################################
#%% Read input file
master_data = pd.read_csv(infile_master, sep = ',')
# column names
#list(master_data.columns)
# extract elevant columns to extract from meta data related to the drug
if in_filename_master == 'original_tanushree_data_v2.csv':
meta_data = master_data[['id'
, 'country'
, 'lineage'
, 'sublineage'
, 'drtype'
, drug
, dr_muts_col
, other_muts_col]]
else:
core_cols = ['id'
, 'sample'
#, 'patient_id'
#, 'strain'
, 'lineage'
, 'sublineage'
, 'country_code'
#, 'geographic_source'
, resistance_col]
variable_based_cols = [drug
, dr_muts_col
, other_muts_col]
cols_to_extract = core_cols + variable_based_cols
print('Extracting', len(cols_to_extract), 'columns from master data')
meta_data = master_data[cols_to_extract]
del(master_data, variable_based_cols, cols_to_extract)
print('Extracted meta data from filename:', in_filename_master
, '\nDim:', meta_data.shape)
# checks and results
total_samples = meta_data['id'].nunique()
print('RESULT: Total samples:', total_samples
, '\n===========================================================')
# counts NA per column
meta_data.isna().sum()
print('No. of NAs/column:' + '\n', meta_data.isna().sum()
, '\n===========================================================\n')
###############################################################################
#%% Quick checks:
meta_data['lineage'].value_counts()
meta_data['lineage'].value_counts().sum()
meta_data['lineage'].nunique()
# replace lineage with 'L' in lineage_labels
#meta_data['lineage_labels'] = meta_data['lineage']
#meta_data['lineage_labels'].equals(meta_data['lineage'])
#all(meta_data['lineage_labels'].value_counts() == meta_data['lineage'].value_counts())
#meta_data['lineage_labels'] = meta_data['lineage_labels'].str.replace('lineage', 'L')
#meta_data['lineage'].value_counts()
#meta_data['lineage_labels'].value_counts()
meta_data['lineage'] = meta_data['lineage'].str.replace('lineage', 'L')
meta_data['lineage'].value_counts()
print("\n================================"
, "\nLineage numbers"
, "\nComplete lineage samples:", meta_data['lineage'].value_counts().sum()
, "\nMissing lineage samples:", meta_data['id'].nunique() - meta_data['lineage'].value_counts().sum()
, "\n================================")
meta_data['id'].nunique()
meta_data['sample'].nunique()
meta_data['id'].equals(meta_data['sample'])
foo = meta_data.copy()
foo['Diff'] = np.where( foo['id'] == foo['sample'] , '1', '0')
foo['Diff'].value_counts()
meta_data['drtype'].value_counts()
meta_data['drtype'].value_counts().sum()
print("\n================================"
, "\ndrtype numbers"
, "\nComplete drtype samples:", meta_data['drtype'].value_counts().sum()
, "\nMissing drtype samples:", meta_data['id'].nunique() - meta_data['drtype'].value_counts().sum()
, "\n================================")
meta_data['drug_name'] = meta_data[drug].map({1:'R'
, 0:'S'})
meta_data['drug_name'].value_counts()
meta_data[drug].value_counts()
meta_data[drug].value_counts().sum()
print("\n================================"
, "\ndrug", drug, "numbers"
, "\nComplete drug samples:", meta_data[drug].value_counts().sum()
, "\nMissing drug samples:", meta_data['id'].nunique() - meta_data[drug].value_counts().sum()
, "\n================================")
print("\n================================"
, "\ndrug", drug, "numbers"
, "\nComplete drug samples:", meta_data['drug_name'].value_counts().sum()
, "\nMissing drug samples:", meta_data['id'].nunique() - meta_data['drug_name'].value_counts().sum()
, "\n================================")
#%% Quick counts: All samples, drug:
print('===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, ':', meta_data[drug].value_counts().sum()
, '\n===========================================================\n'
, 'RESULT: No. of Sus and Res', drug, 'samples:\n', meta_data[drug].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res', drug, 'samples:\n', meta_data[drug].value_counts(normalize = True)*100
, '\n===========================================================')
print('===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, ':', meta_data['drug_name'].value_counts().sum()
, '\n===========================================================\n'
, 'RESULT: No. of Sus and Res', drug, 'samples:\n', meta_data['drug_name'].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res', drug, 'samples:\n', meta_data['drug_name'].value_counts(normalize = True)*100
, '\n===========================================================')
##############################################################################
#%% Extracting nsSNP for gene (meta_gene_all): from dr_muts col and other_muts_col
#meta_data_gene = meta_data.loc[ (meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) | (meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) ]
# so downstream code doesn't change
meta_gene_all = meta_data.loc[ (meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) | (meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) ]
#%% DF: with dr_muts_col
meta_gene_dr = meta_gene_all.loc[meta_gene_all[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
meta_gene_dr1 = meta_data.loc[meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
if meta_gene_dr.equals(meta_gene_dr1):
print('\nPASS: DF with column:', dr_muts_col, 'extracted successfully'
, '\ngene_snp_match in column:',dr_muts_col, meta_gene_dr.shape)
else:
sys.exit('\nFAIL: DF with column:', dr_muts_col,'could not be extracted'
, '\nshape of df1:', meta_gene_dr.shape
, '\nshape of df2:', meta_gene_dr1.shape
, '\nCheck again!')
##############################################################################
#%% DF: with other_muts_col
meta_gene_other = meta_gene_all.loc[meta_gene_all[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
meta_gene_other1 = meta_data.loc[meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in dr:', len(meta_gene_other))
meta_gene_other.equals(meta_gene_other1)
if meta_gene_other.equals(meta_gene_other1):
print('\nPASS: DF with column:', other_muts_col,'extracted successfully'
, '\ngene_snp_match in column:',other_muts_col, meta_gene_other.shape)
else:
sys.exit('\nFAIL: DF with column:', other_muts_col,'could not be extracted'
, '\nshape of df1:', meta_gene_other.shape
, '\nshape of df2:', meta_gene_other1.shape
, '\nCheck again!')
##############################################################################
#%% Quick counts: <gene>nsSNP samples, drug
meta_gene_all[drug].value_counts()
print('===========================================================\n'
, 'RESULT: Total no. of samples for', drug, 'with nsSNP mutations:', meta_gene_all['id'].nunique()
, '\n===========================================================\n'
, '===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, 'with nsSNP mutations:', meta_gene_all[drug].value_counts().sum()
, '\n===========================================================\n'
, '===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, 'with nsSNP mutations:', meta_gene_all['drug_name'].value_counts().sum()
, '\n===========================================================\n'
, 'RESULT: No. of Sus and Res', drug, 'samples with nsSNP:\n', meta_gene_all['drug_name'].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res', drug, 'samples with nsSNP mutations:\n', meta_gene_all['drug_name'].value_counts(normalize = True)*100
, '\n===========================================================')
###############################################################################
#%% Create a copy of indices for downstream mergeing
meta_gene_all['index_orig'] = meta_gene_all.index
meta_gene_all['index_orig_copy'] = meta_gene_all.index
all(meta_gene_all.index.values == meta_gene_all['index_orig'].values)
all(meta_gene_all.index.values == meta_gene_all['index_orig_copy'].values)
##############################################################################
#%% Important sanity checks: Dr muts column for tidy split(), nsSNPs, etc.
# Split based on semi colon dr_muts_col
search = ";"
# count of occurrence of ";" in dr_muts_col: No.of semicolons + 1 is no. of rows created * occurence
count_df_dr = meta_gene_dr[['id', dr_muts_col]]
count_df_dr['dr_semicolon_count'] = meta_gene_dr.loc[:, dr_muts_col].str.count(search, re.I)
dr_sc_C = count_df_dr['dr_semicolon_count'].value_counts().reset_index()
dr_sc_C
dr_sc_C['index_semicolon'] = (dr_sc_C['index'] + 1) *dr_sc_C['dr_semicolon_count']
dr_sc_C
expected_drC = dr_sc_C['index_semicolon'].sum()
expected_drC
# count no. of nsSNPs and extract those nsSNPs
count_df_dr['dr_geneSNP_count'] = meta_gene_dr.loc[:, dr_muts_col].str.count(nssnp_match, re.I)
dr_gene_count1 = count_df_dr['dr_geneSNP_count'].sum()
###############################################################################
# This is to find out how many samples have 1 and more than 1 mutation,so you
# can use it to check if your data extraction process for dr_muts
# and other_muts has worked correctly AND also to check the dim of the
# final formatted data.
# This will have: unique COMBINATION of sample id and <gene_match> mutations
#========
# First: counting <gene_match> mutations in dr_muts_col column
#========
print('Now counting WT &', nssnp_match, 'muts within the column:', dr_muts_col)
# drop na and extract a clean df
clean_df = meta_data.dropna(subset=[dr_muts_col])
# sanity check: count na
na_count = meta_data[dr_muts_col].isna().sum()
if len(clean_df) == (total_samples - na_count):
print('PASS: clean_df extracted: length is', len(clean_df)
, '\nNo.of NAs in', dr_muts_col, '=', na_count, '/', total_samples
, '\n==========================================================')
else:
sys.exit('FAIL: Could not drop NAs')
dr_gene_count = 0
wt = 0
id_dr = []
id2_dr = []
dr_gene_mutsL = []
#nssnp_match_regex = re.compile(nssnp_match)
for i, id in enumerate(clean_df.id):
#print (i, id)
#id_dr.append(id)
#count_gene_dr = clean_df[dr_muts_col].iloc[i].count(gene_match) # can include stop muts
count_gene_dr = len(re.findall(nssnp_match, clean_df[dr_muts_col].iloc[i], re.IGNORECASE))
gene_drL = re.findall(nssnp_match, clean_df[dr_muts_col].iloc[i], re.IGNORECASE)
#print(count_gene_dr)
if count_gene_dr > 0:
id_dr.append(id)
if count_gene_dr > 1:
id2_dr.append(id)
#print(id, count_gene_dr)
dr_gene_count = dr_gene_count + count_gene_dr
dr_gene_mutsL = dr_gene_mutsL + gene_drL
count_wt = clean_df[dr_muts_col].iloc[i].count('WT')
wt = wt + count_wt
print('RESULTS:')
print('Total WT in dr_muts_col:', wt)
print('Total matches of', gene, 'SNP matches in', dr_muts_col, ':', dr_gene_count)
print('Total samples with > 1', gene, 'nsSNPs in dr_muts_col:', len(id2_dr) )
print('Total matches of UNIQUE', gene, 'SNP matches in', dr_muts_col, ':', len(set(dr_gene_mutsL)))
print('=================================================================')
if dr_gene_count == dr_gene_count1:
print('\nPass: dr gene SNP count match')
else:
sys.exit('\nFAIL: dr gene SNP count MISmatch')
del(clean_df, na_count, i, id, wt, id2_dr, count_gene_dr, count_wt)
#%% tidy_split(): dr_muts_col
#=========
# DF1: dr_muts_col
# and remove leading white spaces
#=========
col_to_split1 = dr_muts_col
print ('Firstly, applying tidy split on dr muts df', meta_gene_dr.shape
, '\ncolumn name to apply tidy_split():' , col_to_split1
, '\n============================================================')
# apply tidy_split()
dr_WF0 = tidy_split(meta_gene_dr, col_to_split1, sep = ';')
# remove leading white space else these are counted as distinct mutations as well
dr_WF0[dr_muts_col] = dr_WF0[dr_muts_col].str.strip()
if len(dr_WF0) == expected_drC:
print('\nPass: tidy split on', dr_muts_col, 'worked'
, '\nExpected nrows:', expected_drC
, '\nGot nrows:', len(dr_WF0) )
else:
print('\nFAIL: tidy split on', dr_muts_col, 'did not work'
, '\nExpected nrows:', expected_drC
, '\nGot nrows:', len(dr_WF0) )
# Extract only the samples/rows with nssnp_match
#dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(gene_match)]
dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(nssnp_match, regex = True, case = False)]
#dr_gene_WF0_v2 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(nssnp_match_captureG, regex = True, case = False)]
print('Lengths after tidy split and extracting', nssnp_match, 'muts:'
, '\nOld length:' , len(meta_gene_dr)
, '\nLength after split:', len(dr_WF0)
, '\nLength of nssnp df:', len(dr_gene_WF0)
, '\nExpected len:', dr_gene_count
, '\n=============================================================')
# Important: Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df
dr_df = dr_gene_WF0.assign(mutation_info = dr_muts_col)
print('Dim of dr_df:', dr_df.shape
, '\n=============================================================='
, '\nEnd of tidy split() on dr_muts, and added an extra column relecting mut_category'
, '\n===============================================================')
if other_muts_col in dr_df.columns:
print('Dropping:', other_muts_col, 'from WF gene dr_df')
dr_df = dr_df.drop([other_muts_col], axis = 1)
########################################################################
#%% Important sanity checks: other muts column for tidy split(), nsSNPs, etc.
# Split based on semi colon on other_muts_col
# count of occurrence of ";" in other_muts_col: No.of semicolons + 1 is no. of rows created * occurence
count_df_other = meta_gene_other[['id', other_muts_col]]
count_df_other['other_semicolon_count'] = meta_gene_other.loc[:, other_muts_col].str.count(search, re.I)
other_sc_C = count_df_other['other_semicolon_count'].value_counts().reset_index()
other_sc_C
other_sc_C['index_semicolon'] = (other_sc_C['index']+1)*other_sc_C['other_semicolon_count']
other_sc_C
expected_otherC = other_sc_C['index_semicolon'].sum()
expected_otherC
# count no. of nsSNPs and extract those nsSNPs
count_df_other['other_geneSNP_count'] = meta_gene_other.loc[:, other_muts_col].str.count(nssnp_match, re.I)
other_gene_count1 = count_df_other['other_geneSNP_count'].sum()
# This is to find out how many samples have 1 and more than 1 mutation,so you
# can use it to check if your data extraction process for dr_muts
# and other_muts has worked correctly AND also to check the dim of the
# final formatted data.
# This will have: unique COMBINATION of sample id and <gene_match> mutations
#========
# Second: counting <gene_match> mutations in other_muts_col column
#========
print('Now counting WT &', nssnp_match, 'muts within the column:', other_muts_col)
# drop na and extract a clean df
clean_df = meta_data.dropna(subset=[other_muts_col])
# sanity check: count na
na_count = meta_data[other_muts_col].isna().sum()
if len(clean_df) == (total_samples - na_count):
print('PASS: clean_df extracted: length is', len(clean_df)
, '\nNo.of NAs =', na_count, '/', total_samples
, '\n=========================================================')
else:
sys.exit('FAIL: Could not drop NAs')
other_gene_count = 0
wt_other = 0
id_other = []
id2_other = []
other_gene_mutsL = []
for i, id in enumerate(clean_df.id):
#print (i, id)
#id_other.append(id)
#count_gene_other = clean_df[other_muts_col].iloc[i].count(gene_match) # can include stop muts
count_gene_other = len(re.findall(nssnp_match, clean_df[other_muts_col].iloc[i], re.IGNORECASE))
gene_otherL = re.findall(nssnp_match, clean_df[other_muts_col].iloc[i], re.IGNORECASE)
#print(count_gene_other)
if count_gene_other > 0:
id_other.append(id)
if count_gene_other > 1:
id2_other.append(id)
#print(id, count_gene_other)
other_gene_count = other_gene_count + count_gene_other
other_gene_mutsL = other_gene_mutsL + gene_otherL
count_wt = clean_df[other_muts_col].iloc[i].count('WT')
wt_other = wt_other + count_wt
print('RESULTS:')
print('Total WT in other_muts_col:', wt_other)
print('Total matches of', gene, 'SNP matches in', other_muts_col, ':', other_gene_count)
print('Total samples with > 1', gene, 'nsSNPs in other_muts_col:', len(id2_other) )
print('Total matches of UNIQUE', gene, 'SNP matches in', other_muts_col, ':', len(set(other_gene_mutsL)))
print('=================================================================')
if other_gene_count == other_gene_count1:
print('\nPass: other gene SNP count match')
else:
sys.exit('\nFAIL: other gene SNP count MISmatch')
del(clean_df, na_count, i, id, wt_other, id2_other, count_gene_other, count_wt )
#%% tidy_split(): other_muts_col
#=========
# DF2: other_muts_col
# and remove leading white spaces
#=========
col_to_split2 = other_muts_col
print ('applying second tidy split() separately on other muts df', meta_gene_other.shape
, '\ncolumn name to apply tidy_split():', col_to_split2
, '\n============================================================')
# apply tidy_split()
other_WF1 = tidy_split(meta_gene_other, col_to_split2, sep = ';')
# remove the leading white spaces in the column
other_WF1[other_muts_col] = other_WF1[other_muts_col].str.strip()
# extract only the samples/rows with nssnp_match
#other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(gene_match)]
other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(nssnp_match, regex = True, case = False)]
print('Lengths after tidy split and extracting', gene_match, 'muts:',
'\nOld length:' , len(meta_gene_other),
'\nLength after split:', len(other_WF1),
'\nLength of nssnp df:', len(other_gene_WF1),
'\nExpected len:', other_gene_count
, '\n=============================================================')
# Important: Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df
other_df = other_gene_WF1.assign(mutation_info = other_muts_col)
print('dim of other_df:', other_df.shape
, '\n==============================================================='
, '\nEnd of tidy split() on other_muts, and added an extra column relecting mut_category'
, '\n===============================================================')
if dr_muts_col in other_df.columns:
print('Dropping:', dr_muts_col, 'from WF gene other_df')
other_df = other_df.drop([dr_muts_col], axis = 1)
###############################################################################
#%% Finding ambiguous muts
common_snps_dr_other = set(dr_gene_mutsL).intersection(set(other_gene_mutsL))
#%% More sanity checks: expected unique snps and nrows in LF data
expected_unique_snps = len(set(dr_gene_mutsL)) + len(set(other_gene_mutsL)) - len(common_snps_dr_other)
expected_rows = dr_gene_count + other_gene_count
#%% Useful results to note==> counting dr, other and common muts
print('\n==================================================================='
, '\nCount unique nsSNPs for', gene, ':'
, expected_unique_snps
, '\n===================================================================')
Vcounts_dr = pd.Series(dr_gene_mutsL).value_counts()
Vcounts_common_dr = Vcounts_dr.get(list(common_snps_dr_other))
print('\n==================================================================='
, "\nCount of samples for common muts in dr muts\n"
, Vcounts_common_dr
, '\n===================================================================')
Vcounts_other = pd.Series(other_gene_mutsL).value_counts()
Vcounts_common_other = Vcounts_other.get(list(common_snps_dr_other))
print('\n==================================================================='
, '\nCount of samples for common muts in other muts\n'
, Vcounts_common_other
, '\n===================================================================')
print('\n==================================================================='
, '\nPredicting total no. of rows in the curated df:', expected_rows
, '\n===================================================================')
#%%another way: Add value checks for dict so you can know if its correct for LF data count below
dr_snps_vc_dict = pd.Series(dr_gene_mutsL).value_counts().to_dict()
other_snps_vc_dict = pd.Series(other_gene_mutsL).value_counts().to_dict()
for k, v in dr_snps_vc_dict.items():
if k in common_snps_dr_other:
print(k,v)
for k, v in other_snps_vc_dict.items():
if k in common_snps_dr_other:
print(k,v)
# using defaultdict
Cdict = collections.defaultdict(int)
# iterating key, val with chain()
for key, val in itertools.chain(dr_snps_vc_dict.items(), other_snps_vc_dict.items()):
if key in common_snps_dr_other:
Cdict[key] += val
else:
Cdict[key] = val
print(dict(Cdict))
for k, v in Cdict.items():
if k in common_snps_dr_other:
print(k,v)
###############################################################################
# USE Vcounts to get expected curated df
# resolve dm om muts funda
#%%#%% Concatenating two dfs: gene_LF0
# equivalent of rbind in R
#==========
# Concatentating the two dfs: equivalent of rbind in R
#==========
# Important: Change column names to allow concat:
# dr_muts.. & other_muts : 'mutation'
print('Now concatenating the two dfs by row'
, '\nFirst assigning a common colname: "mutation" to the col containing muts'
, '\nThis is done for both dfs'
, '\n===================================================================')
dr_df.columns
dr_df.rename(columns = {dr_muts_col: 'mutation'}, inplace = True)
dr_df.columns
other_df.columns
other_df.rename(columns = {other_muts_col: 'mutation'}, inplace = True)
other_df.columns
if len(dr_df.columns) == len(other_df.columns):
print('Checking dfs for concatening by rows:'
, '\nDim of dr_df:', dr_df.shape
, '\nDim of other_df:', other_df.shape
, '\nExpected nrows:', len(dr_df) + len(other_df)
, '\n=============================================================')
else:
sys.exit('FAIL: No. of cols mismatch for concatenating')
# checking colnames before concat
print('Checking colnames BEFORE concatenating the two dfs...')
if (set(dr_df.columns) == set(other_df.columns)):
print('PASS: column names match necessary for merging two dfs')
else:
sys.exit('FAIL: Colnames mismatch for concatenating!')
# concatenate (axis = 0): Rbind, adn keeo original index
print('Now appending the two dfs: Rbind')
gene_LF_comb = pd.concat([dr_df, other_df]
#, ignore_index = True
, axis = 0)
if gene_LF_comb.index.nunique() == len(meta_gene_all.index):
print('\nPASS:length of index in LF data:', len(gene_LF_comb.index)
, '\nLength of unique index in LF data:', gene_LF_comb.index.nunique()
)
else:
sys.exit('\nFAIL: expected length for combined LF data mismatch:'
, '\nExpected length:', len(meta_gene_all.index)
, '\nGot:', gene_LF_comb.index.nunique() )
print('Finding stop mutations in concatenated df')
stop_muts = gene_LF_comb['mutation'].str.contains('\*').sum()
if stop_muts == 0:
print('PASS: No stop mutations detected')
else:
print('stop mutations detected'
, '\nNo. of stop muts:', stop_muts, '\n'
, gene_LF_comb.groupby(['mutation_info'])['mutation'].apply(lambda x: x[x.str.contains('\*')].count())
, '\nNow removing them')
gene_LF0_nssnp = gene_LF_comb[~gene_LF_comb['mutation'].str.contains('\*')]
print('snps only: by subtracting stop muts:', len(gene_LF0_nssnp))
gene_LF0 = gene_LF_comb[gene_LF_comb['mutation'].str.contains(nssnp_match, case = False)]
print('snps only by direct regex:', len(gene_LF0))
if gene_LF0_nssnp.equals(gene_LF0):
print('PASS: regex for extracting nssnp worked correctly & stop mutations successfully removed'
, '\nUsing the regex extracted df')
else:
sys.exit('FAIL: posssibly regex or no of stop mutations'
, 'Regex being used:', nssnp_match)
#sys.exit()
# checking colnames and length after concat
print('Checking colnames AFTER concatenating the two dfs...')
if (set(dr_df.columns) == set(gene_LF0.columns)):
print('PASS: column names match'
, '\n=============================================================')
else:
sys.exit('FAIL: Colnames mismatch AFTER concatenating')
print('Checking concatenated df')
if len(gene_LF0) == (len(dr_df) + len(other_df))- stop_muts:
print('PASS:length of df after concat match'
, '\n===============================================================')
else:
sys.exit('FAIL: length mismatch')
#%% NEW check2:id, sample, etc.
gene_LF0['id'].count()
gene_LF0['id'].nunique()
gene_LF0['sample'].nunique()
gene_LF0['mutation_info'].value_counts()
gene_LF0[drug].isna().sum()
#%% Concatenating two dfs sanity checks: gene_LF1
#=========================================================
# This is hopefully clean data, but just double check
# Filter LF data so that you only have
# mutations corresponding to nssnp_match (case insensitive)
# this will be your list you run OR calcs
#=========================================================
print('Length of gene_LF0:', len(gene_LF0)
, '\nThis should be what we need. But just double checking and extracting nsSNP for', gene
, '\nfrom LF0 (concatenated data) using case insensitive regex match:', nssnp_match)
gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(nssnp_match, regex = True, case = False)]
if len(gene_LF0) == len(gene_LF1):
print('PASS: length of gene_LF0 and gene_LF1 match',
'\nConfirming extraction and concatenating worked correctly'
, '\n==========================================================')
else:
print('FAIL: BUT NOT FATAL!'
, '\ngene_LF0 and gene_LF1 lengths differ'
, '\nsuggesting error in extraction process'
, ' use gene_LF1 for downstreama analysis'
, '\n=========================================================')
print('Length of dfs pre and post processing...'
, '\ngene WF data (unique samples in each row):',len(meta_gene_all)
, '\ngene LF data (unique mutation in each row):', len(gene_LF1)
, '\n=============================================================')
# sanity check for extraction
# This ought to pass if nsnsp_match happens right at the beginning of creating 'expected_rows'
print('Verifying whether extraction process worked correctly...')
if len(gene_LF1) == expected_rows:
print('PASS: extraction process performed correctly'
, '\nExpected length:', expected_rows
, '\nGot:', len(gene_LF1)
, '\nRESULT: Total no. of mutant sequences for logo plot:', len(gene_LF1)
, '\n=========================================================')
else:
print('FAIL: extraction process has bugs'
, '\nExpected length:', expected_rows
, '\nGot:', len(gene_LF1)
, '\nDebug please'
, '\n=========================================================')
# more sanity checks
print('Performing some more sanity checks...')
# From LF1: useful for OR counts
# no. of unique muts
distinct_muts = gene_LF1.mutation.value_counts()
print('Distinct genomic mutations:', len(distinct_muts))
# no. of samples contributing the unique muts
gene_LF1.id.nunique()
print('No.of samples contributing to distinct genomic muts:', gene_LF1.id.nunique())
# no. of dr and other muts
mut_grouped = gene_LF1.groupby('mutation_info').mutation.nunique()
print('No.of unique dr and other muts:\n', gene_LF1.groupby('mutation_info').mutation.nunique())
# sanity check
if len(distinct_muts) == mut_grouped.sum() :
print('PASS:length of LF1 is as expected'
, '\n===============================================================')
else:
print('FAIL: Mistmatch in count of muts'
, '\nExpected count:', len(distinct_muts)
, '\nActual count:', mut_grouped.sum()
, '\nMuts should be distinct within dr* and other* type'
, '\nInspecting...possibly ambiguous muts'
, '\nNo. of possible ambiguous muts:', mut_grouped.sum() - len(distinct_muts)
, '\n=========================================================')
muts_split = list(gene_LF1.groupby('mutation_info'))
dr_muts = muts_split[0][1].mutation
other_muts = muts_split[1][1].mutation
print('splitting muts by mut_info:', muts_split)
print('no.of dr_muts samples:', len(dr_muts))
print('no. of other_muts samples', len(other_muts))
#%% Ambiguous muts
# IMPORTANT: The same mutation cannot be classed as a drug AND 'others'
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('WARNING: Ambiguous muts detected in dr_ and other_ mutation category'
, '\n===============================================================')
else:
print('PASS: NO ambiguous muts detected'
, '\nMuts are unique to dr_ and other_ mutation class'
, '\n=========================================================')
# inspect dr_muts and other muts: Fixed in case no ambiguous muts detected!
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('Finding ambiguous muts...'
, '\n========================================================='
, '\nTotal no. of samples in dr_muts present in other_muts:', dr_muts.isin(other_muts).sum()
, '\nThese are:', dr_muts[dr_muts.isin(other_muts)]
, '\n========================================================='
, '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum()
, '\nThese are:\n', other_muts[other_muts.isin(dr_muts)]
, '\n=========================================================')
print('Counting no. of ambiguous muts...'
, '\nNo. of ambiguous muts in dr:'
, len(dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist())
, '\nNo. of ambiguous muts in other:'
, len(other_muts[other_muts.isin(dr_muts)].value_counts().keys().tolist())
, '\n=========================================================')
if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique():
common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist()
print('Distinct no. of ambigiuous muts detected:'+ str(len(common_muts))
, '\nlist of ambiguous mutations (see below):', *common_muts, sep = '\n')
print('\n===========================================================')
else:
#sys.exit('Error: ambiguous muts present, but extraction failed. Debug!')
print('No: ambiguous muts present')
#%% Ambiguous muts: revised annotation for mutation_info
ambiguous_muts_df = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
ambiguous_muts_value_counts = ambiguous_muts_df.groupby('mutation')['mutation_info'].value_counts()
ambiguous_muts_value_counts
gene_LF1_orig = gene_LF1.copy()
gene_LF1_orig.equals(gene_LF1)
# copy the old columns for checking
gene_LF1['mutation_info_orig'] = gene_LF1['mutation_info']
gene_LF1['mutation_info_v1'] = gene_LF1['mutation_info']
gene_LF1['mutation_info'].value_counts()
#%% Inspect ambiguous muts
#=====================================
# Now create a new df that will have:
# ambiguous muts
# mutation_info
# revised mutation_info
# The revised label is based on value_counts
# for mutaiton_info. The corresponding mutation_info:
# label is chosen that corresponds to the max of value counts
#=====================================
ambig_muts_rev_df = pd.DataFrame()
changes_val = []
changes_dict = {}
for i in common_muts:
#print(i)
temp_df = gene_LF1[gene_LF1['mutation'] == i][['mutation', 'mutation_info_orig']]
# DANGER: ASSUMES TWO STATES ONLY and that value_counts sorts by descending
max_info_table = gene_LF1[gene_LF1['mutation'] == i][['mutation', 'mutation_info_orig']].value_counts()
revised_label = max_info_table[[0]].index[0][1] # max value_count
old_label = max_info_table[[1]].index[0][1] # min value_count
print('\nAmbiguous mutation labels...'
, '\nSetting mutation_info for', i, 'to', revised_label)
temp_df['mutation_info_REV'] = np.where( (temp_df['mutation_info_orig'] == old_label)
, revised_label
, temp_df['mutation_info_orig'])
ambig_muts_rev_df = pd.concat([ambig_muts_rev_df,temp_df])
f = max_info_table[[1]]
old_label_count = f[[0]][0]
changes_val.append(old_label_count)
cc_dict = f.to_dict()
changes_dict.update(cc_dict)
ambig_muts_rev_df['mutation_info_REV'].value_counts()
ambig_muts_rev_df['mutation_info_orig'].value_counts()
changes_val
changes_total = sum(changes_val)
changes_dict
#%% OUTFILE 3, write file: ambiguous muts and ambiguous mut counts
#===================
# ambiguous muts
#=======================
#dr_muts.to_csv('dr_muts.csv', header = True)
#other_muts.to_csv('other_muts.csv', header = True)
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
out_filename_ambig_muts = gene.lower() + '_ambiguous_muts.csv'
outfile_ambig_muts = outdir + '/' + out_filename_ambig_muts
print('\n----------------------------------'
, '\nWriting file: ambiguous muts'
, '\n----------------------------------'
, '\nFilename:', outfile_ambig_muts)
inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
inspect.to_csv(outfile_ambig_muts, index = True)
print('Finished writing:', out_filename_ambig_muts
, '\nNo. of rows:', len(inspect)
, '\nNo. of cols:', len(inspect.columns)
, '\nNo. of rows = no. of samples with the ambiguous muts present:'
, dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum()
, '\n=============================================================')
del(out_filename_ambig_muts)
#%% FIXME: ambig mut counts
#=======================
# ambiguous mut counts
#=======================
out_filename_ambig_mut_counts = gene.lower() + '_ambiguous_mut_counts.csv'
outfile_ambig_mut_counts = outdir + '/' + out_filename_ambig_mut_counts
print('\n----------------------------------'
, '\nWriting file: ambiguous muts'
, '\n----------------------------------'
, '\nFilename:', outfile_ambig_mut_counts)
ambiguous_muts_value_counts.to_csv(outfile_ambig_mut_counts, index = True)
#%%FIXME: TODO: Add sanity check to make sure you can add value_count checks
#%% Resolving ambiguous muts
# Merging ambiguous muts
#=================
# Merge ambig muts
# with gene_LF1
#===================
ambig_muts_rev_df.index
gene_LF1.index
all(ambig_muts_rev_df.index.isin(gene_LF1.index))
gene_LF1.loc[ambig_muts_rev_df.index, 'mutation_info_v1'] = ambig_muts_rev_df['mutation_info_REV']
gene_LF1['mutation_info_orig'].value_counts()
gene_LF1['mutation_info_v1'].value_counts()
foo = gene_LF1.iloc[ambig_muts_rev_df.index]
# Sanity check1: if there are still any ambiguous muts
muts_split_rev = list(gene_LF1.groupby('mutation_info_v1'))
dr_muts_rev = muts_split_rev[0][1].mutation
other_muts_rev = muts_split_rev[1][1].mutation
print('splitting muts by mut_info:', muts_split_rev)
print('no.of dr_muts samples:', len(dr_muts_rev))
print('no. of other_muts samples', len(other_muts_rev))
if not dr_muts_rev.isin(other_muts_rev).sum() & other_muts_rev.isin(dr_muts_rev).sum() > 0:
print('\nAmbiguous muts corrected. Proceeding with downstream analysis')
else:
print('\nAmbiguous muts NOT corrected. Quitting!')
sys.exit()
gene_LF1['mutation_info_v1'].value_counts()
#%% PHEW! Good to go for downstream stuff