398 lines
12 KiB
R
398 lines
12 KiB
R
#########################################################
|
|
# TASK: To calculate Allele Frequency and
|
|
# Odds Ratio from master data
|
|
# and add the calculated params to meta_data extracted from
|
|
# data_extraction.py
|
|
#########################################################
|
|
getwd()
|
|
setwd('~/git/LSHTM_analysis/meta_data_analysis')
|
|
getwd()
|
|
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = 'pyrazinamide'
|
|
gene = 'pncA'
|
|
gene_match = paste0(gene,'_p.')
|
|
cat(gene_match)
|
|
|
|
#===========
|
|
# input
|
|
#===========
|
|
# infile1: Raw data
|
|
#indir = 'git/Data/pyrazinamide/input/original'
|
|
indir = paste0('~/git/Data')
|
|
in_filename = 'original_tanushree_data_v2.csv'
|
|
infile = paste0(indir, '/', in_filename)
|
|
cat(paste0('Reading infile1: raw data', ' ', infile) )
|
|
|
|
# infile2: gene associated meta data file to extract valid snps and add calcs to.
|
|
# This is outfile3 from data_extraction.py
|
|
indir_metadata = paste0('~/git/Data', '/', drug, '/', 'output')
|
|
in_filename_metadata = 'pnca_metadata.csv'
|
|
infile_metadata = paste0(indir_metadata, '/', in_filename_metadata)
|
|
cat(paste0('Reading infile2: gene associated metadata:', infile_metadata))
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
# outdir = 'git/Data/pyrazinamide/output'
|
|
outdir = paste0('~/git/Data', '/', drug, '/', 'output')
|
|
out_filename = paste0(tolower(gene),'_', 'meta_data_with_AFandOR.csv')
|
|
outfile = paste0(outdir, '/', out_filename)
|
|
cat(paste0('Output file with full path:', outfile))
|
|
#%% end of variable assignment for input and output files
|
|
|
|
#########################################################
|
|
# 1: Read master/raw data stored in Data/
|
|
#########################################################
|
|
raw_data_all = read.csv(infile, stringsAsFactors = F)
|
|
|
|
raw_data = raw_data_all[,c("id"
|
|
, "pyrazinamide"
|
|
, "dr_mutations_pyrazinamide"
|
|
, "other_mutations_pyrazinamide")]
|
|
rm(raw_data_all)
|
|
|
|
rm(indir, in_filename, infile)
|
|
|
|
#===========
|
|
# 1a: exclude na
|
|
#===========
|
|
raw_data = raw_data[!is.na(raw_data$pyrazinamide),]
|
|
|
|
total_samples = length(unique(raw_data$id))
|
|
cat(paste0('Total samples without NA in', ' ', drug, 'is:', total_samples))
|
|
|
|
# sanity check: should be true
|
|
is.numeric(total_samples)
|
|
|
|
#===========
|
|
# 1b: combine the two mutation columns
|
|
#===========
|
|
raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide
|
|
, raw_data$other_mutations_pyrazinamide)
|
|
head(raw_data$all_mutations_pyrazinamide)
|
|
|
|
#===========
|
|
# 1c: create yet another column that contains all the mutations but in lower case
|
|
#===========
|
|
raw_data$all_muts_pnca = tolower(raw_data$all_mutations_pyrazinamide)
|
|
|
|
# sanity checks
|
|
#table(grepl("pnca_p",raw_data$all_muts_pnca))
|
|
cat(paste0('converting gene match:', gene_match, ' ', 'to lowercase'))
|
|
gene_match = tolower(gene_match)
|
|
|
|
table(grepl(gene_match,raw_data$all_muts_pnca))
|
|
|
|
# sanity check: should be TRUE
|
|
#sum(table(grepl("pnca_p",raw_data$all_muts_pnca))) == total_samples
|
|
sum(table(grepl(gene_match,raw_data$all_muts_pnca))) == total_samples
|
|
|
|
# set up variables: can be used for logistic regression as well
|
|
i = "pnca_p.ala134gly" # has a NA, should NOT exist
|
|
table(grepl(i,raw_data$all_muts_pnca))
|
|
|
|
i = "pnca_p.trp68gly"
|
|
table(grepl(i,raw_data$all_muts_pnca))
|
|
|
|
mut = grepl(i,raw_data$all_muts_pnca)
|
|
dst = raw_data$pyrazinamide
|
|
table(mut, dst)
|
|
|
|
#chisq.test(table(mut,dst))
|
|
#fisher.test(table(mut, dst))
|
|
#table(mut)
|
|
|
|
#########################################################
|
|
# 2: Read valid snps for which OR
|
|
# can be calculated (infile_comp_snps.csv)
|
|
#########################################################
|
|
cat(paste0('Reading metadata infile:', infile_metadata))
|
|
|
|
pnca_metadata = read.csv(infile_metadata
|
|
# , file.choose()
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
|
|
# clear variables
|
|
rm(indir, in_filename, infile)
|
|
rm(indir_metadata, in_filename_metadata, infile_metadata)
|
|
|
|
# count na in pyrazinamide column
|
|
tot_pza_na = sum(is.na(pnca_metadata$pyrazinamide))
|
|
expected_rows = nrow(pnca_metadata) - tot_pza_na
|
|
|
|
# drop na from the pyrazinamide colum
|
|
pnca_snps_or = pnca_metadata[!is.na(pnca_metadata$pyrazinamide),]
|
|
|
|
# sanity check
|
|
if(nrow(pnca_snps_or) == expected_rows){
|
|
cat('PASS: no. of rows match with expected_rows')
|
|
} else{
|
|
cat('FAIL: nrows mismatch.')
|
|
}
|
|
|
|
# extract unique snps to iterate over for AF and OR calcs
|
|
pnca_snps_unique = unique(pnca_snps_or$mutation)
|
|
|
|
cat(paste0('Total no. of distinct comp snps to perform OR calcs: ', length(pnca_snps_unique)))
|
|
|
|
# Define OR function
|
|
x = as.numeric(mut)
|
|
y = dst
|
|
or = function(x,y){
|
|
tab = as.matrix(table(x,y))
|
|
a = tab[2,2]
|
|
if (a==0){ a<-0.5}
|
|
b = tab[2,1]
|
|
if (b==0){ b<-0.5}
|
|
c = tab[1,2]
|
|
if (c==0){ c<-0.5}
|
|
d = tab[1,1]
|
|
if (d==0){ d<-0.5}
|
|
(a/b)/(c/d)
|
|
|
|
}
|
|
|
|
dst = raw_data$pyrazinamide
|
|
ors = sapply(pnca_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_pnca)
|
|
or(mut,dst)
|
|
})
|
|
|
|
ors
|
|
|
|
pvals = sapply(pnca_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_pnca)
|
|
fisher.test(mut,dst)$p.value
|
|
})
|
|
|
|
pvals
|
|
|
|
afs = sapply(pnca_snps_unique,function(m){
|
|
mut = grepl(m,raw_data$all_muts_pnca)
|
|
mean(mut)
|
|
})
|
|
|
|
afs
|
|
|
|
# check ..hmmm
|
|
afs['pnca_p.trp68gly']
|
|
afs['pnca_p.gln10pro']
|
|
afs['pnca_p.leu4ser']
|
|
|
|
plot(density(log(ors)))
|
|
plot(-log10(pvals))
|
|
hist(log(ors)
|
|
, breaks = 100
|
|
)
|
|
|
|
# sanity check
|
|
if (table(names(ors) == names(pvals)) & table(names(ors) == names(afs)) & table(names(pvals) == names(afs)) == length(pnca_snps_unique)){
|
|
cat('PASS: names of ors, pvals and afs match: proceed with combining into a single df')
|
|
} else{
|
|
cat('FAIL: names of ors, pvals and afs mismatch')
|
|
}
|
|
|
|
# combine ors, pvals and afs
|
|
cat('Combining calculated params into a df: ors, pvals and afs')
|
|
|
|
comb_AF_and_OR = data.frame(ors, pvals, afs)
|
|
cat('No. of rows in comb_AF_and_OR: ', nrow(comb_AF_and_OR)
|
|
, '\nNo. of cols in comb_AF_and_OR: ', ncol(comb_AF_and_OR))
|
|
|
|
cat('Rownames == mutation: ', head(rownames(comb_AF_and_OR)))
|
|
|
|
# add rownames of comb_AF_and_OR as an extra column 'mutation' to allow merging based on this column
|
|
comb_AF_and_OR$mutation = rownames(comb_AF_and_OR)
|
|
|
|
# sanity check
|
|
if (table(rownames(comb_AF_and_OR) == comb_AF_and_OR$mutation)){
|
|
cat('PASS: rownames and mutaion col values match')
|
|
}else{
|
|
cat('FAIL: rownames and mutation col values mismatch')
|
|
}
|
|
|
|
#########################################################
|
|
# 3: Merge meta data file + calculated num params
|
|
#########################################################
|
|
df1 = pnca_metadata
|
|
df2 = comb_AF_and_OR
|
|
|
|
cat('checking commom col of the two dfs before merging:'
|
|
,'\ndf1:', head(df1$mutation)
|
|
, '\ndf2:', head(df2$mutation))
|
|
|
|
cat(paste0('merging two dfs: '
|
|
,'\ndf1 (big df i.e. meta data) nrows: ', nrow(df1)
|
|
,'\ndf2 (small df i.e af, or, pval) nrows: ', nrow(df2)
|
|
,'\nexpected rows in merged df: ', nrow(df1)
|
|
,'\nexpected cols in merged_df: ', (ncol(df1) + ncol(df2) - 1)))
|
|
|
|
merged_df = merge(df1 # big file
|
|
, df2 # small (afor file)
|
|
, by = "mutation"
|
|
, all.x = T) # because you want all the entries of the meta data
|
|
|
|
# sanity check
|
|
if(ncol(merged_df) == (ncol(df1) + ncol(df2) - 1)){
|
|
cat(paste0('PASS: no. of cols is as expected: ', ncol(merged_df)))
|
|
} else{
|
|
cat('FAIL: no.of cols mistmatch')
|
|
}
|
|
|
|
# quick check
|
|
i = "pnca_p.ala134gly" # has all NAs in pyrazinamide, should be NA in ors, etc.
|
|
merged_df[merged_df$mutation == i,]
|
|
|
|
# count na in each column
|
|
na_count = sapply(merged_df, function(y) sum(length(which(is.na(y))))); na_count
|
|
|
|
# check last three cols: should be NA
|
|
if ( identical(na_count[[length(na_count)]], na_count[[length(na_count)-1]], na_count[[length(na_count)-2]])){
|
|
cat('PASS: No. of NAs for OR, AF and Pvals are equal as expected',
|
|
'\nNo. of NA: ', na_count[[length(na_count)]])
|
|
} else {
|
|
cat('FAIL: No. of NAs for OR, AF and Pvals mismatch')
|
|
}
|
|
|
|
# reassign custom colnames
|
|
cat('Assigning custom colnames for the calculated params...')
|
|
colnames(merged_df)[colnames(merged_df)== "ors"] <- "OR"
|
|
colnames(merged_df)[colnames(merged_df)== "pvals"] <- "pvalue"
|
|
colnames(merged_df)[colnames(merged_df)== "afs"] <- "AF"
|
|
|
|
colnames(merged_df)
|
|
|
|
# add 3 more cols: log OR, neglog pvalue and AF_percent cols
|
|
merged_df$logor = log(merged_df$OR)
|
|
is.numeric(merged_df$logor)
|
|
|
|
merged_df$neglog10pvalue = -log10(merged_df$pvalue)
|
|
is.numeric(merged_df$neglog10pvalue)
|
|
|
|
merged_df$AF_percent = merged_df$AF*100
|
|
is.numeric(merged_df$AF_percent)
|
|
|
|
# check AFs
|
|
#i = 'pnca_p.trp68gly'
|
|
i = 'pnca_p.gln10pro'
|
|
#i = 'pnca_p.leu4ser'
|
|
merged_df[merged_df$mutation == i,]
|
|
|
|
# FIXME: harcoding (beware!), NOT FATAL though!
|
|
ncol_added = 3
|
|
|
|
cat(paste0('Added', ' ', ncol_added, ' more cols to merged_df:'
|
|
, '\ncols added: logor, neglog10pvalue and AF_percent:'
|
|
, '\nno. of cols in merged_df now: ', ncol(merged_df)))
|
|
|
|
#%% write file out: pnca_meta_data_with_AFandOR
|
|
#*********************************************
|
|
cat(paste0('writing output file: '
|
|
, '\nFilename: ', out_filename
|
|
, '\nPath:', outdir))
|
|
|
|
write.csv(merged_df, outfile
|
|
, row.names = F)
|
|
|
|
cat(paste0('Finished writing:'
|
|
, out_filename
|
|
, '\nNo. of rows: ', nrow(merged_df)
|
|
, '\nNo. of cols: ', ncol(merged_df)))
|
|
#************************************************
|
|
cat('======================================================================')
|
|
rm(out_filename)
|
|
cat('End of script: calculated AF, OR, pvalues and saved file')
|
|
# End of script
|
|
#%%
|
|
# sanity check: Count NA in these four cols.
|
|
# However these need to be numeric else these
|
|
# will be misleading when counting NAs (i.e retrun 0)
|
|
#is.numeric(meta_with_afor$OR)
|
|
na_var = c('AF', 'OR', 'pvalue', 'logor', 'neglog10pvalue')
|
|
|
|
# loop through these vars and check if these are numeric.
|
|
# if not, then convert to numeric
|
|
check_all = NULL
|
|
|
|
for (i in na_var){
|
|
# cat(i)
|
|
check0 = is.numeric(meta_with_afor[,i])
|
|
if (check0) {
|
|
check_all = c(check0, check_all)
|
|
cat('These are all numeric cols')
|
|
} else{
|
|
cat('First converting to numeric')
|
|
check0 = as.numeric(meta_with_afor[,i])
|
|
check_all = c(check0, check_all)
|
|
}
|
|
}
|
|
|
|
# count na now that the respective cols are numeric
|
|
na_count = sapply(meta_with_afor, function(y) sum(length(which(is.na(y))))); na_count
|
|
str(na_count)
|
|
|
|
# extract how many NAs:
|
|
# should be all TRUE
|
|
# should be a single number since
|
|
# all the cols should have 'equal' and 'same' no. of NAs
|
|
# compare if the No of 'NA' are the same for all these cols
|
|
na_len = NULL
|
|
for (i in na_var){
|
|
temp = na_count[[i]]
|
|
na_len = c(na_len, temp)
|
|
}
|
|
|
|
cat('Checking how many NAs and if these are identical for the selected cols:')
|
|
my_nrows = NULL
|
|
for ( i in 1: (length(na_len)-1) ){
|
|
# cat(compare(na_len[i]), na_len[i+1])
|
|
c = compare(na_len[i], na_len[i+1])
|
|
if ( c$result ) {
|
|
cat('PASS: No. of NAa in selected cols are identical')
|
|
my_nrows = na_len[i] }
|
|
else {
|
|
cat('FAIL: No. of NAa in selected cols mismatch')
|
|
}
|
|
}
|
|
|
|
cat('No. of NAs in each of the selected cols: ', my_nrows)
|
|
|
|
# yet more sanity checks:
|
|
cat('Check whether the ', my_nrows, 'indices are indeed the same')
|
|
|
|
#which(is.na(meta_with_afor$OR))
|
|
|
|
# initialise an empty df with nrows as extracted above
|
|
na_count_df = data.frame(matrix(vector(mode = 'numeric'
|
|
# , length = length(na_var)
|
|
)
|
|
, nrow = my_nrows
|
|
# , ncol = length(na_var)
|
|
))
|
|
|
|
# populate the df with the indices of the cols that are NA
|
|
for (i in na_var){
|
|
cat(i)
|
|
na_i = which(is.na(meta_with_afor[i]))
|
|
na_count_df = cbind(na_count_df, na_i)
|
|
colnames(na_count_df)[which(na_var == i)] <- i
|
|
}
|
|
|
|
# Now compare these indices to ensure these are the same
|
|
check2 = NULL
|
|
for ( i in 1: ( length(na_count_df)-1 ) ) {
|
|
# cat(na_count_df[i] == na_count_df[i+1])
|
|
check_all = identical(na_count_df[[i]], na_count_df[[i+1]])
|
|
check2 = c(check_all, check2)
|
|
if ( all(check2) ) {
|
|
cat('PASS: The indices for AF, OR, etc are all the same\n')
|
|
} else {
|
|
cat ('FAIL: Please check indices which are NA')
|
|
}
|
|
}
|
|
|
|
|
|
|