289 lines
8.7 KiB
R
289 lines
8.7 KiB
R
#!/usr/bin/env Rscript
|
|
#########################################################
|
|
# TASK: producing logo-type plot showing
|
|
# multiple muts per position coloured by aa property
|
|
#########################################################
|
|
#=======================================================================
|
|
# working dir and loading libraries
|
|
getwd()
|
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|
getwd()
|
|
|
|
source("Header_TT.R")
|
|
#library(ggplot2)
|
|
#library(data.table)
|
|
#library(dplyr)
|
|
|
|
#===========
|
|
# input
|
|
#===========
|
|
source("combining_dfs_plotting.R")
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
|
|
logo_multiple_muts = "logo_multiple_muts.svg"
|
|
plot_logo_multiple_muts = paste0(plotdir,"/", logo_multiple_muts)
|
|
|
|
|
|
logo_or = "logo_or.svg"
|
|
plot_logo_or = paste0(plotdir,"/", logo_or)
|
|
|
|
|
|
logo_combined_labelled = "logo_combined_labelled.svg"
|
|
plot_logo_combined_labelled = paste0(plotdir,"/", logo_combined_labelled)
|
|
|
|
##########################################################################
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# REASSIGNMENT
|
|
my_df = merged_df3
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
# clear excess variables
|
|
rm(merged_df2, merged_df2_comp, merged_df2_lig, merged_df2_comp_lig
|
|
, merged_df3_comp, merged_df3_comp_lig
|
|
, my_df_u, my_df_u_lig, merged_df3_lig)
|
|
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
#rownames(my_df) = my_df$mutation
|
|
|
|
c1 = unique(my_df$position)
|
|
nrow(my_df)
|
|
|
|
# get freq count of positions so you can subset freq<1
|
|
#require(data.table)
|
|
setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)] #189, 36
|
|
|
|
table(my_df$position)
|
|
table(my_df$mut_pos_occurrence)
|
|
|
|
max_mut = max(table(my_df$position))
|
|
|
|
# extract freq_pos>1
|
|
my_df_snp = my_df[my_df$mut_pos_occurrence!=1,]
|
|
u = unique(my_df_snp$position)
|
|
max_mult_mut = max(table(my_df_snp$position))
|
|
|
|
if (nrow(my_df_snp) == nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]] ){
|
|
|
|
cat("PASS: positions with multiple muts extracted"
|
|
, "\nNo. of mutations:", nrow(my_df_snp)
|
|
, "\nNo. of positions:", length(u)
|
|
, "\nMax no. of muts at any position", max_mult_mut)
|
|
}else{
|
|
cat("FAIL: positions with multiple muts could NOT be extracted"
|
|
, "\nExpected:",nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]]
|
|
, "\nGot:", nrow(my_df_snp) )
|
|
}
|
|
|
|
cat("\nNo. of sites with only 1 mutations:", table(my_df$mut_pos_occurrence)[[1]])
|
|
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for_mychisq plots #
|
|
########################################################################
|
|
|
|
#==============
|
|
# matrix for_mychisq mutant type
|
|
# frequency of mutant type by position
|
|
#==============
|
|
table(my_df_snp$mutant_type, my_df_snp$position)
|
|
tab_mt = table(my_df_snp$mutant_type, my_df_snp$position)
|
|
class(tab_mt)
|
|
|
|
# unclass to convert to matrix
|
|
tab_mt = unclass(tab_mt)
|
|
tab_mt = as.matrix(tab_mt, rownames = T)
|
|
|
|
#should be TRUE
|
|
is.matrix(tab_mt)
|
|
|
|
rownames(tab_mt) #aa
|
|
colnames(tab_mt) #pos
|
|
|
|
#**************
|
|
# Plot 1: mutant logo
|
|
#**************
|
|
p0 = ggseqlogo(tab_mt
|
|
, method = 'custom'
|
|
, seq_type = 'aa') +
|
|
#ylab('my custom height') +
|
|
theme_logo()+
|
|
scale_x_discrete(#breaks = 1:ncol(tab_mt)
|
|
labels = as.numeric(colnames(tab_mt))
|
|
, limits = factor(as.numeric(colnames(tab_mt))))+
|
|
scale_y_continuous( breaks = 1:max_mult_mut
|
|
, limits = c(0, max_mult_mut))
|
|
|
|
|
|
p0
|
|
|
|
# further customisation
|
|
p1 = p0 + theme(axis.text.x = element_text(size = 16
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
, axis.text.y = element_blank()
|
|
, legend.position = "none")
|
|
#, axis.text.y = element_text(size = 20))
|
|
p1
|
|
|
|
#==============
|
|
# matrix for wild type
|
|
# frequency of wild type by position
|
|
#==============
|
|
tab_wt = table(my_df_snp$wild_type, my_df_snp$position); tab_wt
|
|
tab_wt = unclass(tab_wt)
|
|
|
|
#remove wt duplicates
|
|
wt = my_df_snp[, c("position", "wild_type")]
|
|
wt = wt[!duplicated(wt),]
|
|
|
|
tab_wt = table(wt$wild_type, wt$position); tab_wt # should all be 1
|
|
rownames(tab_wt)
|
|
rownames(tab_wt)
|
|
|
|
#**************
|
|
# Plot 2: wild_type logo
|
|
#**************
|
|
# sanity check: MUST BE TRUE
|
|
|
|
identical(colnames(tab_mt), colnames(tab_wt))
|
|
identical(ncol(tab_mt), ncol(tab_wt))
|
|
|
|
p2 = ggseqlogo(tab_wt
|
|
, method = 'custom'
|
|
, seq_type = 'aa'
|
|
#, col_scheme = "taylor"
|
|
#, col_scheme = chemistry2
|
|
) +
|
|
#ylab('my custom height') +
|
|
theme(axis.text.x = element_blank()
|
|
, axis.text.y = element_blank()) +
|
|
#theme_logo() +
|
|
scale_x_discrete(breaks = 1:ncol(tab_wt)
|
|
, labels = colnames(tab_wt))
|
|
p2
|
|
|
|
# further customise
|
|
p3 = p2 +
|
|
theme(legend.position = "bottom"
|
|
#, legend.title = element_blank()
|
|
, legend.title = element_text("Amino acid properties", size = 20)
|
|
, legend.text = element_text( size = 20)
|
|
, axis.text.x = element_text(size = 20, angle = 90)
|
|
, axis.text.y = element_blank()
|
|
, axis.title.y = element_blank()
|
|
, axis.title.x = element_text(size = 22))+
|
|
|
|
labs(x= "Wild-type Position")
|
|
|
|
p3
|
|
#======================================================================
|
|
# logo with OR
|
|
#=======================================================================
|
|
# quick checks
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
c1 = unique(my_df$position)
|
|
nrow(my_df)
|
|
cat("No. of rows in my_df:", nrow(my_df)
|
|
, "\nDistinct positions corresponding to snps:", length(c1)
|
|
, "\n===========================================================")
|
|
|
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
# FIXME: Think and decide what you want to remove
|
|
# mut_pos_occurence < 1 or sample_pos_occurrence <1
|
|
|
|
# get freq count of positions so you can subset freq<1
|
|
require(data.table)
|
|
#setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)]
|
|
|
|
#extract freq_pos>1
|
|
#my_df_snp = my_df[my_df$occurrence!=1,]
|
|
|
|
#u = unique(my_df_snp$position)
|
|
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# REASSIGNMENT to prevent changing code
|
|
my_df_snp #(positions with multiple snps) only
|
|
length(unique(my_df_snp$position))
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
#=======================================================================
|
|
#%% logo plots from dataframe
|
|
|
|
#############
|
|
# PLOTS: ggseqlogo with custom height
|
|
# https://omarwagih.github.io/ggseqlogo/
|
|
#############
|
|
foo = my_df_snp[, c("position", "mutant_type","duet_scaled", "or_mychisq"
|
|
, "mut_prop_polarity", "mut_prop_water") ]
|
|
|
|
my_df_snp$log10or = log10(my_df_snp$or_mychisq)
|
|
logo_data = my_df_snp[, c("position", "mutant_type", "or_mychisq", "log10or")]
|
|
|
|
logo_data_or = my_df_snp[, c("position", "mutant_type", "or_mychisq")]
|
|
wide_df_or <- logo_data_or %>% spread(position, or_mychisq, fill = 0.0)
|
|
|
|
wide_df_or = as.matrix(wide_df_or)
|
|
rownames(wide_df_or) = wide_df_or[,1]
|
|
wide_df_or = wide_df_or[,-1]
|
|
str(wide_df_or)
|
|
|
|
position_or = as.numeric(colnames(wide_df_or))
|
|
|
|
#===========================================
|
|
#custom height (OR) logo plot: CORRECT x-axis labelling
|
|
#============================================
|
|
# custom height (OR) logo plot: yayy works
|
|
|
|
#cat("Logo plot with OR as y axis:", plot_logo_or)
|
|
#svg(plot_logo_or, width = 30 , height = 6)
|
|
|
|
logo_or = ggseqlogo(wide_df_or, method="custom", seq_type="aa") + ylab("my custom height") +
|
|
theme(axis.text.x = element_text(size = 16
|
|
, angle = 90
|
|
, hjust = 1
|
|
, vjust = 0.4)
|
|
, axis.text.y = element_text(size = 18
|
|
, angle = 0
|
|
, hjust = 1
|
|
, vjust = 0)
|
|
, axis.title.y = element_text(size = 18)
|
|
, axis.title.x = element_blank()
|
|
, legend.position = "none")+
|
|
scale_x_discrete( labels = position_or
|
|
, limits = factor(1:length(position_or))) +
|
|
scale_y_discrete(breaks = c(50, 150, 250, 350)
|
|
, labels = c(50, 150, 250, 350)
|
|
, limits = c(50, 150, 250, 350)
|
|
) +
|
|
xlab("Position") +
|
|
ylab("Odds Ratio")
|
|
|
|
print(logo_or)
|
|
#dev.off()
|
|
#%% end of logo plot with OR as height
|
|
|
|
#===================================================================
|
|
|
|
cat("Output plot:", plot_logo_combined_labelled)
|
|
svg(plot_logo_combined_labelled, width = 25, height = 10)
|
|
|
|
OutPlot2 = cowplot::plot_grid(logo_or, p1, p3
|
|
, nrow = 3
|
|
, align = "hv"
|
|
, labels = c("(a)","(b)", "(c)")
|
|
, rel_heights = c(3/8, 3/8, 1.5/8)
|
|
, rel_widths = c(0.85, 1, 1)
|
|
, label_size = 25)
|
|
|
|
print(OutPlot2)
|
|
dev.off()
|