155 lines
7.4 KiB
Python
Executable file
155 lines
7.4 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Jun 29 20:29:36 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
import sys, os
|
|
import pandas as pd
|
|
import numpy as np
|
|
import re
|
|
#import prettyprint as pp
|
|
###############################################################################
|
|
homedir = os.path.expanduser("~")
|
|
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/ml/ml_functions')
|
|
sys.path
|
|
###############################################################################
|
|
outdir = homedir + '/git/LSHTM_ML/output/fs/'
|
|
|
|
#====================
|
|
# Import ML functions
|
|
#====================
|
|
|
|
from MultClfs import *
|
|
from GetMLData import *
|
|
from SplitTTS import *
|
|
from FS import *
|
|
# param dict for getmldata()
|
|
combined_model_paramD = {'data_combined_model' : False
|
|
, 'use_or' : False
|
|
, 'omit_all_genomic_features': False
|
|
, 'write_maskfile' : False
|
|
, 'write_outfile' : False }
|
|
###############################################################################
|
|
#ml_genes = ["pncA", "embB", "katG", "rpoB", "gid"]
|
|
# outdir = homedir + '/git/Data/ml_combined/fs/'
|
|
|
|
ml_gene_drugD = {
|
|
'pncA' : 'pyrazinamide', # NOTE: may need re-run for 80_20 and sl
|
|
#'embB' : 'ethambutol',
|
|
#'katG' : 'isoniazid', #NOTE: RF only for all split-types actual
|
|
#'rpoB' : 'rifampicin',
|
|
#'gid' : 'streptomycin' # NOTE: for gid, run 'actual' on 80/20 and sl only
|
|
}
|
|
gene_dataD={}
|
|
|
|
#split_types = ['70_30', '80_20', 'sl']
|
|
#split_data_types = ['actual', 'complete']
|
|
|
|
split_types = ['70_30']
|
|
#split_data_types = ['actual', 'complete']
|
|
split_data_types = ['actual']
|
|
|
|
fs_models = [
|
|
#('Ridge Classifier' , RidgeClassifier(**rs) ),
|
|
#('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) ),
|
|
#('Logistic Regression' , LogisticRegression(**rs, **njobs) ),
|
|
#('AdaBoost Classifier' , AdaBoostClassifier(**rs) ),
|
|
#('Gradient Boosting' , GradientBoostingClassifier(**rs) ),
|
|
#('Stochastic GDescent' , SGDClassifier(**rs, **njobs) ),
|
|
#('Decision Tree' , DecisionTreeClassifier(**rs) ),
|
|
#('Extra Trees' , ExtraTreesClassifier(**rs, **njobs) ),
|
|
#('Extra Tree' , ExtraTreeClassifier(**rs) ),
|
|
#('LDA' , LinearDiscriminantAnalysis() ),
|
|
#('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs, **njobs) ),
|
|
#('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
|
#('Random Forest' , RandomForestClassifier(n_estimators = 1000, verbose=3, **rs, **njobs ) )
|
|
('XGBoost' , XGBClassifier(verbosity=3, use_label_encoder=False, **rs, **njobs) )
|
|
]
|
|
|
|
for gene, drug in ml_gene_drugD.items():
|
|
#print ('\nGene:', gene
|
|
# , '\nDrug:', drug)
|
|
gene_low = gene.lower()
|
|
gene_dataD[gene_low] = getmldata(gene, drug
|
|
, data_combined_model = False # this means it doesn't include 'gene_name' as a feauture as a single gene-target shouldn't have it.
|
|
, use_or = False
|
|
, omit_all_genomic_features = False
|
|
, write_maskfile = False
|
|
, write_outfile = False)
|
|
|
|
for split_type in split_types:
|
|
for data_type in split_data_types:
|
|
# unused per-split outfile
|
|
#out_filename = outdir + gene.lower() + '_'+split_type+'_' + data_type + '.json'
|
|
tempD=split_tts(gene_dataD[gene_low]
|
|
, data_type = data_type
|
|
, split_type = split_type
|
|
, oversampling = True # TURN IT ON TO RUN THE OTHERS BIS
|
|
, dst_colname = 'dst'
|
|
, target_colname = 'dst_mode'
|
|
, include_gene_name = True
|
|
)
|
|
paramD = {
|
|
'baseline_paramD': { 'input_df' : tempD['X']
|
|
, 'target' : tempD['y']
|
|
, 'var_type' : 'mixed'
|
|
, 'resampling_type': 'none'}
|
|
#, 'smnc_paramD' : { 'input_df' : tempD['X_smnc']
|
|
# , 'target' : tempD['y_smnc']
|
|
# , 'var_type' : 'mixed'
|
|
# , 'resampling_type' : 'smnc'}
|
|
#, 'ros_paramD' : { 'input_df' : tempD['X_ros']
|
|
# , 'target' : tempD['y_ros']
|
|
# , 'var_type' : 'mixed'
|
|
# , 'resampling_type' : 'ros'}
|
|
#, 'rus_paramD' : { 'input_df' : tempD['X_rus']
|
|
# , 'target' : tempD['y_rus']
|
|
# , 'var_type' : 'mixed'
|
|
# , 'resampling_type' : 'rus'}
|
|
#, 'rouC_paramD' : { 'input_df' : tempD['X_rouC']
|
|
# , 'target' : tempD['y_rouC']
|
|
# , 'var_type' : 'mixed'
|
|
# , 'resampling_type': 'rouC'}
|
|
}
|
|
|
|
out_fsD = {}
|
|
index = 1
|
|
for model_name, model_fn in fs_models:
|
|
print('\nRunning classifier with FS:', index
|
|
, '\nModel_name:' , model_name
|
|
, '\nModel func:' , model_fn)
|
|
#, '\nList of models:', models)
|
|
index = index+1
|
|
#out_fsD[model_name] = {}
|
|
current_model = {}
|
|
model_name_clean = model_name.replace(' ','-')
|
|
|
|
for k, v in paramD.items():
|
|
out_filename = outdir + gene.lower() + '_' + split_type + '_' + data_type + '_' + model_name_clean + '_' + k + '.json'
|
|
fsD_params=paramD[k]
|
|
|
|
#out_fsD[model_name][k] = fsgs_rfecv(
|
|
#current_model[k] = v
|
|
|
|
# NOTE: this will silently fail with a syntax error if you don't have all the necessary libraries installed.
|
|
# Python will NOT warn you of the missing lib!
|
|
current_model[k] = fsgs_rfecv(
|
|
**fsD_params
|
|
, param_gridLd = [{'fs__min_features_to_select': [1]}]
|
|
, blind_test_df = tempD['X_bts']
|
|
, blind_test_target = tempD['y_bts']
|
|
, estimator = model_fn
|
|
, use_fs = False # uses estimator as the RFECV parameter for fs. Set to TRUE if you want to supply custom_fs as shown below
|
|
, custom_fs = RFECV(DecisionTreeClassifier(**rs), cv = skf_cv, scoring = 'matthews_corrcoef')
|
|
, cv_method = skf_cv
|
|
)
|
|
|
|
# write current model to disk
|
|
#print(current_model)
|
|
print("⚠️ ⚠️ ⚠️ WRITING TO FILE: ", out_filename, "⚠️ ⚠️ ⚠️'")
|
|
out_json = json.dumps(current_model)
|
|
with open(out_filename, 'w', encoding="utf-8") as file:
|
|
file.write(out_json)
|
|
print("⚠️ ⚠️ ⚠️ Finished writing to: ", out_filename, "⚠️ ⚠️ ⚠️'")
|