LSHTM_analysis/scripts/plotting/mcsm_mean_stability_ensemble_5uhc_rpob.R

176 lines
7.1 KiB
R

#source("~/git/LSHTM_analysis/config/pnca.R")
#source("~/git/LSHTM_analysis/config/alr.R")
#source("~/git/LSHTM_analysis/config/gid.R")
#source("~/git/LSHTM_analysis/config/embb.R")
#source("~/git/LSHTM_analysis/config/katg.R")
#source("~/git/LSHTM_analysis/config/rpob.R")
source("/home/tanu/git/LSHTM_analysis/my_header.R")
#########################################################
# TASK: Generate averaged stability values
# across all stability tools
# for a given structure
#########################################################
#=======
# output
#=======
outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene))
outfile_mean_ens_st_aff = paste0(outdir_images, "/5uhc_", tolower(gene)
, "_mean_ens_stability.csv")
print(paste0("Output file:", outfile_mean_ens_st_aff))
#%%===============================================================
#=============
# Input
#=============
df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv")
df3 = read.csv(df3_filename)
length(df3$mutationinformation)
# mut_info checks
table(df3$mutation_info)
table(df3$mutation_info_orig)
table(df3$mutation_info_labels_orig)
# used in plots and analyses
table(df3$mutation_info_labels) # different, and matches dst_mode
table(df3$dst_mode)
# create column based on dst mode with different colname
table(is.na(df3$dst))
table(is.na(df3$dst_mode))
#===============
# Create column: sensitivity mapped to dst_mode
#===============
df3$sensitivity = ifelse(df3$dst_mode == 1, "R", "S")
table(df3$sensitivity)
length(unique((df3$mutationinformation)))
all_colnames = as.data.frame(colnames(df3))
common_cols = c("mutationinformation"
, "X5uhc_position"
, "dst_mode"
, "mutation_info_labels"
, "sensitivity"
, "X5uhc_position"
, "X5uhc_offset"
, "ligand_distance"
, "interface_dist")
all_colnames$`colnames(df3)`[grep("scaled", all_colnames$`colnames(df3)`)]
all_colnames$`colnames(df3)`[grep("outcome", all_colnames$`colnames(df3)`)]
#===================
# stability cols
#===================
raw_cols_stability = c("duet_stability_change"
, "deepddg"
, "ddg_dynamut2"
, "ddg_foldx")
scaled_cols_stability = c("duet_scaled"
, "deepddg_scaled"
, "ddg_dynamut2_scaled"
, "foldx_scaled")
outcome_cols_stability = c("duet_outcome"
, "deepddg_outcome"
, "ddg_dynamut2_outcome"
, "foldx_outcome")
###########################################################
cols_to_consider = colnames(df3)[colnames(df3)%in%c(common_cols
, raw_cols_stability
, scaled_cols_stability
, outcome_cols_stability)]
cols_to_extract = cols_to_consider[cols_to_consider%in%c(common_cols
, outcome_cols_stability)]
##############################################################
#####################
# Ensemble stability: outcome_cols_stability
#####################
# extract outcome cols and map numeric values to the categories
# Destabilising == 0, and stabilising == 1, so rescaling can let -1 be destabilising
df3_plot = df3[, cols_to_extract]
# assign numeric values to outcome
df3_plot[, outcome_cols_stability] <- sapply(df3_plot[, outcome_cols_stability]
, function(x){ifelse(x == "Destabilising", 0, 1)})
table(df3$duet_outcome)
table(df3_plot$duet_outcome)
#=====================================
# Stability (4 cols): average the scores
# across predictors ==> average by
# X5uhc_position ==> scale b/w -1 and 1
# column to average: ens_stability
#=====================================
cols_to_average = which(colnames(df3_plot)%in%outcome_cols_stability)
# ensemble average across predictors
df3_plot$ens_stability = rowMeans(df3_plot[,cols_to_average])
head(df3_plot$X5uhc_position); head(df3_plot$mutationinformation)
head(df3_plot$ens_stability)
table(df3_plot$ens_stability)
# ensemble average of predictors by X5uhc_position
mean_ens_stability_by_position <- df3_plot %>%
dplyr::group_by(X5uhc_position) %>%
dplyr::summarize(avg_ens_stability = mean(ens_stability))
# REscale b/w -1 and 1
#en_stab_min = min(mean_ens_stability_by_position['avg_ens_stability'])
#en_stab_max = max(mean_ens_stability_by_position['avg_ens_stability'])
# scale the average stability value between -1 and 1
# mean_ens_by_position['averaged_stability3_scaled'] = lapply(mean_ens_by_position['averaged_stability3']
# , function(x) ifelse(x < 0, x/abs(en3_min), x/en3_max))
mean_ens_stability_by_position['avg_ens_stability_scaled'] = lapply(mean_ens_stability_by_position['avg_ens_stability']
, function(x) {
scales::rescale(x, to = c(-1,1)
#, from = c(en_stab_min,en_stab_max))
, from = c(0,1))
})
cat(paste0('Average stability scores:\n'
, head(mean_ens_stability_by_position['avg_ens_stability'])
, '\n---------------------------------------------------------------'
, '\nAverage stability scaled scores:\n'
, head(mean_ens_stability_by_position['avg_ens_stability_scaled'])))
# convert to a data frame
mean_ens_stability_by_position = as.data.frame(mean_ens_stability_by_position)
#FIXME: sanity checks
# TODO: predetermine the bounds
# l_bound_ens = min(mean_ens_stability_by_position['avg_ens_stability_scaled'])
# u_bound_ens = max(mean_ens_stability_by_position['avg_ens_stability_scaled'])
#
# if ( (l_bound_ens == -1) && (u_bound_ens == 1) ){
# cat(paste0("PASS: ensemble stability scores averaged by X5uhc_position and then scaled"
# , "\nmin ensemble averaged stability: ", l_bound_ens
# , "\nmax ensemble averaged stability: ", u_bound_ens))
# }else{
# cat(paste0("FAIL: avergaed duet scores could not be scaled b/w -1 and 1"
# , "\nmin ensemble averaged stability: ", l_bound_ens
# , "\nmax ensemble averaged stability: ", u_bound_ens))
# quit()
# }
##################################################################
# output
#write.csv(combined_df, outfile_mean_ens_st_aff
write.csv(mean_ens_stability_by_position
, outfile_mean_ens_st_aff
, row.names = F)
cat("Finished writing file:\n"
, outfile_mean_ens_st_aff
, "\nNo. of rows:", nrow(mean_ens_stability_by_position)
, "\nNo. of cols:", ncol(mean_ens_stability_by_position))
# end of script
#===============================================================