LSHTM_analysis/scripts/combine_afs_ors.py

296 lines
9.8 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 4 (mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# This is done in 2 steps:
# merge 1:
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
import argparse
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# local import
from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = 'pyrazinamide')
arg_parser.add_argument('-g', '--gene', help = 'gene name', default = 'pncA') # case sensitive
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
#drug = 'pyrazinamide'
#gene = 'pncA'
#gene_match = gene + '_p.'
# cmd variables
drug = args.drug
gene = args.gene
gene_match = gene + '_p.'
#==========
# dir
#==========
datadir = homedir + '/' + 'git/Data'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
in_filename_afor = gene.lower() + '_af_or.csv'
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
infile1 = outdir + '/' + in_filename_afor
infile2 = outdir + '/' + in_filename_afor_kin
print('Input file1:', infile1
, '\nInput file2:', infile2
, '\n===================================================================')
#=======
# output
#=======
out_filename = gene.lower() + '_metadata_afs_ors.csv'
outfile = outdir + '/' + out_filename
print('Output file:', outfile
, '\n===================================================================')
del(in_filename_afor, in_filename_afor_kin, datadir, outdir)
#%% end of variable assignment for input and output files
#=======================================================================
#%% format mutations
# mut_format: gene.abc1cde | 1A>1B
#========================
# read input csv files to combine
#========================
afor_df = pd.read_csv(infile1, sep = ',')
afor_df_ncols = len(afor_df.columns)
afor_df_nrows = len(afor_df)
print('No. of rows in', infile1, ':', afor_df_nrows
, '\nNo. of cols in', infile1, ':', afor_df_ncols)
afor_kin_df = pd.read_csv(infile2, sep = ',')
afor_kin_df_nrows = len(afor_kin_df)
afor_kin_df_ncols = len(afor_kin_df.columns)
print('No. of rows in', infile2, ':', afor_kin_df_nrows
, '\nNo. of cols in', infile2, ':', afor_kin_df_ncols)
#=======
# Iterate through the dict, create a lookup dict i.e
# lookup_dict = {three_letter_code: one_letter_code}.
# lookup dict should be the key and the value (you want to create a column for)
# Then use this to perform the mapping separetly for wild type and mutant cols.
# The three letter code is extracted using a string match match from the dataframe and then converted
# to 'pandas series'since map only works in pandas series
#=======
gene_regex = gene_match.lower()+'(\w{3})'
print('gene regex being used:', gene_regex)
# initialise a sub dict that is lookup dict for three letter code to 1-letter code
# adding three more cols
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['one_letter_code']
# wt = gene_LF1['mutation'].str.extract('gene_p.(\w{3})').squeeze() # converts to a series that map works on
wt = afor_df['mutation'].str.extract(gene_regex).squeeze()
afor_df['wild_type'] = wt.map(lookup_dict)
mut = afor_df['mutation'].str.extract('\d+(\w{3})$').squeeze()
afor_df['mutant_type'] = mut.map(lookup_dict)
# extract position info from mutation column separetly using string match
afor_df['position'] = afor_df['mutation'].str.extract(r'(\d+)')
# combine the wild_type+poistion+mutant_type columns to generate
# mutationinformation (matches mCSM output field)
# Remember to use .map(str) for int col types to allow string concatenation
afor_df['mutationinformation'] = afor_df['wild_type'] + afor_df['position'].map(str) + afor_df['mutant_type']
print('Created column: mutationinformation'
, '\n====================================================================='
, afor_df['mutationinformation'].head(10))
# sanity check
ncols_add = 4 # beware of hardcoding (3 cols for mcsm style mut + 1 for concatenating them all)
if len(afor_df.columns) == afor_df_ncols + ncols_add:
afor_df_ncols = len(afor_df.columns) # update afor_df_ncols after adding cols
print('PASS: successfully added', ncols_add, 'cols'
, '\nold length:', afor_df_ncols
, '\nnew length:', len(afor_df.columns))
else:
print('FAIL: failed to add cols:'
, '\nExpected cols:', afor_df_ncols + ncols_add
, '\nGot:', len(afor_df.columns))
sys.exit()
#%% Detect mutation format to see if you apply this func
# FIXME
#afor_df.iloc[[0]].str.match('pnca_')
#afor_df.dtypes
#foo = afor_df.loc[:, afor_df.dtypes == object]
genomic_mut_regex = gene_match.lower()+'\w{3}\d+\w{3}'
print('gene regex being used:', genomic_mut_regex)
afor_df[(afor_df == genomic_mut_regex).any(axis = 1)]
#%% Finding common col to merge on
# Define merging column: multiple cols have been used for merge else the common cols
# get suffixes '_x' and '_y' attached
# also, couldn't include 'position' in merging_cols since data types don't match
merging_cols = ['wild_type', 'mutant_type', 'mutationinformation']
ncommon_cols= len(merging_cols)
# checking cross-over of mutations in the two dfs to merge
ndiff1 = afor_kin_df_nrows - afor_df['mutationinformation'].isin(afor_kin_df['mutationinformation']).sum()
print(ndiff1)
ndiff2 = afor_kin_df_nrows - afor_kin_df['mutationinformation'].isin(afor_df['mutationinformation']).sum()
print(ndiff2)
#%% combining dfs
# Define join type
#my_join = 'inner'
#my_join = 'right'
#my_join = 'left'
my_join = 'outer'
fail = False
# sanity check: how many muts from afor_kin_df are in afor_df. should be a complete subset
if ndiff2 == 0:
print('PASS: all muts in afor_kin_df are present in afor_df'
, '\nProceeding with combining the dfs...')
combined_df = pd.merge(afor_df, afor_kin_df, on = merging_cols, how = my_join)
if my_join == ('outer' or 'left') :
print('combing with:', my_join)
expected_rows = afor_df_nrows + ndiff1
if my_join == ('inner' or 'right'):
print('combing with:', my_join)
expected_rows = afor_kin_df_nrows
expected_cols = afor_df_ncols + afor_kin_df_ncols - ncommon_cols
if len(combined_df) == expected_rows and len(combined_df.columns) == expected_cols:
print('PASS: successfully combined dfs with:', my_join, 'join')
else:
print('FAIL: combined_df\'s expected rows and cols not matched')
fail = True # BAD practice! just a placeholder to avoid code duplication
print('\nExpected no. of rows:', expected_rows
, '\nGot:', len(combined_df)
, '\nExpected no. of cols:', expected_cols
, '\nGot:', len(combined_df.columns))
if fail:
sys.exit('ERROR: combined_df may be incorrectly combined')
else:
print('FAIL: numbers mismatch, mutations present in afor_kin_df but not in afor_df')
sys.exit('ERROR: Not all mutations in the kinship_df are present in the df with other ORs')
#%% check duplicate cols: ones containing suffix '_x' or '_y'
# should only be position
foo = combined_df.filter(regex = r'.*_x|_y', axis = 1)
print(foo.columns) # should only be position
# drop position col containing suffix '_y' and then rename col without suffix
combined_or_df = combined_df.drop(combined_df.filter(regex = r'.*_y').columns, axis = 1)
combined_or_df['position_x'].head()
# renaming columns
combined_or_df.rename(columns = {'position_x': 'position'}, inplace = True)
combined_or_df['position'].head()
# recheck
foo = combined_or_df.filter(regex = r'.*_x|_y', axis = 1)
print(foo.columns) # should only be empty
#%% rearraging columns
print('Dim of df prefromatting:', combined_or_df.shape)
print(combined_or_df.columns)
#%% reorder columns
#https://stackoverflow.com/questions/13148429/how-to-change-the-order-of-dataframe-columns
# setting column's order
output_df = combined_or_df[['mutation',
'mutationinformation',
'wild_type',
'position',
'mutant_type',
'chr_num_allele',
'ref_allele',
'alt_allele',
'mut_info',
'mut_type',
'gene_id',
'gene_number',
'mut_region',
'reference_allele',
'alternate_allele',
'chromosome_number',
'af',
'af_kin',
'or_kin',
'or_logistic',
'or_mychisq',
'est_chisq',
'or_fisher',
'ci_low_logistic',
'ci_hi_logistic',
'ci_low_fisher',
'ci_hi_fisher',
'pwald_kin',
'pval_logistic',
'pval_fisher',
'pval_chisq',
'beta_logistic',
'beta_kin',
'se_logistic',
'se_kin',
'zval_logistic',
'logl_H1_kin',
'l_remle_kin',
'n_diff',
'tot_diff',
'n_miss']]
# sanity check after rearranging
if combined_or_df.shape == output_df.shape and set(combined_or_df.columns) == set(output_df.columns):
print('PASS: Successfully formatted df with rearranged columns')
else:
sys.exit('FAIL: something went wrong when rearranging columns!')
#%% write file
print('\n====================================================================='
, '\nWriting output file:\n', outfile
, '\nNo.of rows:', len(output_df)
, '\nNo. of cols:', len(output_df.columns))
output_df.to_csv(outfile, index = False)