241 lines
7.4 KiB
R
Executable file
241 lines
7.4 KiB
R
Executable file
#########################################################
|
|
# TASK: Adding colours to dfs so they can be used for plotting
|
|
# add cols to each of the my_df* dfs
|
|
#########################################################
|
|
#=======================================================================
|
|
getwd()
|
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|
getwd()
|
|
|
|
source("plotting_data.R")
|
|
# should return the following dfs and directories
|
|
# my_df
|
|
# my_df_u
|
|
# my_df_u_lig
|
|
# dup_muts
|
|
|
|
cat(paste0("Directories imported:"
|
|
, "\ndatadir:", datadir
|
|
, "\nindir:", indir
|
|
, "\noutdir:", outdir
|
|
, "\nplotdir:", plotdir))
|
|
|
|
cat(paste0("Variables imported:"
|
|
, "\ndrug:", drug
|
|
, "\ngene:", gene
|
|
, "\ngene_match:", gene_match
|
|
, "\nLength of upos:", length(upos)
|
|
, "\nAngstrom symbol:", angstroms_symbol))
|
|
|
|
# clear excess variable
|
|
rm(upos, dup_muts, my_df_u, my_df_u_lig)
|
|
|
|
# This is because we want to assign the colours to my_df
|
|
# and then resubset accordingly for our plots to avoid multiple merges
|
|
|
|
#=======================================================================
|
|
# df to use: my_df
|
|
# NOTE: my_df contains duplicate muts but its ok as you are only adding
|
|
# colours to positions
|
|
|
|
# sanity checks: ensure my_df is ordered by position: it should be
|
|
my_df$position; my_df$mutationinformation
|
|
|
|
my_df_o = my_df[order(my_df$position),]
|
|
my_df_o$position; my_df_o$mutationinformation
|
|
|
|
head(my_df_o$position) == head(my_df$position)
|
|
head(my_df_o$mutationinformation) == head(my_df$mutationinformation)
|
|
tail(my_df_o$position) == tail(my_df$position)
|
|
tail(my_df_o$mutationinformation) == tail(my_df$mutationinformation)
|
|
|
|
my_df = my_df_o
|
|
|
|
# create a new df with unique position numbers and cols
|
|
position = unique(my_df$position)
|
|
position_cols = as.data.frame(position)
|
|
|
|
head(position_cols) ; tail(position_cols)
|
|
|
|
# specify active site residues and bg colour
|
|
position = c(49, 51, 57, 71
|
|
, 8, 96, 138
|
|
, 13, 68
|
|
, 103, 137
|
|
, 133, 134) #13
|
|
|
|
lab_bg = rep(c("purple"
|
|
, "yellow"
|
|
, "cornflowerblue"
|
|
, "blue"
|
|
, "green"), times = c(4, 3, 2, 2, 2)
|
|
)
|
|
|
|
# second bg colour for active site residues
|
|
#lab_bg2 = rep(c("white"
|
|
# , "green" , "white", "green"
|
|
# , "white"
|
|
# , "white"
|
|
# , "white"), times = c(4
|
|
# , 1, 1, 1
|
|
# , 2
|
|
# , 2
|
|
# , 2)
|
|
#)
|
|
|
|
#%%%%%%%%%
|
|
# revised: leave the second box coloured as the first one incase there is no second colour
|
|
#%%%%%%%%%
|
|
lab_bg2 = rep(c("purple"
|
|
, "green", "yellow", "green"
|
|
, "cornflowerblue"
|
|
, "blue"
|
|
, "green"), times = c(4
|
|
, 1, 1, 1
|
|
, 2
|
|
, 2
|
|
, 2))
|
|
|
|
# fg colour for labels for active site residues
|
|
lab_fg = rep(c("white"
|
|
, "black"
|
|
, "black"
|
|
, "white"
|
|
, "black"), times = c(4, 3, 2, 2, 2))
|
|
|
|
#%%%%%%%%%
|
|
# revised: make the purple ones black
|
|
# fg colour for labels for active site residues
|
|
#%%%%%%%%%
|
|
#lab_fg = rep(c("black"
|
|
# , "black"
|
|
# , "black"
|
|
# , "white"
|
|
# , "black"), times = c(4, 3, 2, 2, 2))
|
|
|
|
# combined df with active sites, bg and fg colours
|
|
aa_cols_ref = data.frame(position
|
|
, lab_bg
|
|
, lab_bg2
|
|
, lab_fg
|
|
, stringsAsFactors = F) #13, 4
|
|
|
|
str(position_cols); class(position_cols)
|
|
str(aa_cols_ref); class(aa_cols_ref)
|
|
|
|
# since position is int and numeric in the two dfs resp,
|
|
# converting numeric to int for consistency
|
|
aa_cols_ref$position = as.integer(aa_cols_ref$position)
|
|
class(aa_cols_ref$position)
|
|
|
|
#===========
|
|
# Merge 1: merging positions df (position_cols) and
|
|
# active site cols (aa_cols_ref)
|
|
# linking column: "position"
|
|
# This is so you can have colours defined for all positions
|
|
#===========
|
|
head(position_cols$position); head(aa_cols_ref$position)
|
|
|
|
mut_pos_cols = merge(position_cols, aa_cols_ref
|
|
, by = "position"
|
|
, all.x = TRUE)
|
|
|
|
head(mut_pos_cols)
|
|
|
|
# replace NA"s
|
|
# :column "lab_bg" with "white"
|
|
# : column "lab_fg" with "black"
|
|
mut_pos_cols$lab_bg[is.na(mut_pos_cols$lab_bg)] <- "white"
|
|
mut_pos_cols$lab_bg2[is.na(mut_pos_cols$lab_bg2)] <- "white"
|
|
mut_pos_cols$lab_fg[is.na(mut_pos_cols$lab_fg)] <- "black"
|
|
head(mut_pos_cols)
|
|
|
|
#===========
|
|
# Merge 2: Merge mut_pos_cols with mcsm df
|
|
# Now combined the positions with aa colours with
|
|
# the mcsm_data
|
|
#===========
|
|
# dfs to merge
|
|
df0 = my_df # my_df_o
|
|
df1 = mut_pos_cols
|
|
|
|
# check the column on which merge will be performed
|
|
head(df0$position); tail(df0$position)
|
|
head(df1$position); tail(df1$position)
|
|
|
|
# should now have 3 extra columns
|
|
my_df_cols = merge(df0, df1
|
|
, by = "position"
|
|
, all.x = TRUE)
|
|
|
|
# sanity check
|
|
my_df_cols[my_df_cols$position == "49",]
|
|
my_df_cols[my_df_cols$position == "13",]
|
|
|
|
###########################
|
|
# extract unique mutation entries
|
|
###########################
|
|
|
|
# check for duplicate mutations
|
|
if ( length(unique(my_df_cols$mutationinformation)) != length(my_df_cols$mutationinformation)){
|
|
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
|
|
, "\nExtracting these..."))
|
|
dup_muts_cols = my_df_cols[duplicated(my_df_cols$mutationinformation),]
|
|
dup_muts_cols_nu = length(unique(dup_muts_cols$mutationinformation))
|
|
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts_cols)
|
|
, "\nNo. of unique duplicate mutations:", dup_muts_cols_nu
|
|
, "\n\nExtracting df with unique mutations only"))
|
|
my_df_u_cols = my_df_cols[!duplicated(my_df_cols$mutationinformation),]
|
|
}else{
|
|
cat(paste0("\nNo duplicate mutations detected"))
|
|
my_df_u_cols = my_df_cols
|
|
}
|
|
|
|
upos = unique(my_df_u_cols$position)
|
|
cat("\nDim of clean df:"); cat(dim(my_df_u_cols))
|
|
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
|
|
|
|
|
|
# sanity check
|
|
my_df_u_cols[my_df_u_cols$position == "49",]
|
|
my_df_u_cols[my_df_u_cols$position == "13",]
|
|
my_df_u_cols[my_df_u_cols$position == "103",]
|
|
|
|
###########################
|
|
# extract mutations <10Angstroms
|
|
###########################
|
|
table(my_df_u_cols$ligand_distance<10)
|
|
|
|
my_df_u_cols_lig = my_df_u_cols[my_df_u_cols$ligand_distance <10,]
|
|
angstroms_symbol = "\u212b"
|
|
cat(paste0("There are ", nrow(my_df_u_cols_lig), " sites lying within 10", angstroms_symbol, " of the ligand"))
|
|
|
|
#=================
|
|
# very important!
|
|
#=================
|
|
#my_axis_colours = mut_pos_cols$lab_fg # doesn't work if positions numbers are subsetted as in ligand
|
|
# need the equivalent of the mut_pos_cols for ligand
|
|
|
|
# get position numbers for ligand
|
|
lig_pos = my_df_u_cols_lig$position
|
|
|
|
# subset mut_pos_cols for ligand positions
|
|
mut_pos_cols_lig = mut_pos_cols[mut_pos_cols$position %in% lig_pos,]
|
|
#my_axis_colours = mut_pos_cols_lig$lab_fg
|
|
|
|
#====================================================================
|
|
# clear variables
|
|
rm(aa_cols_ref
|
|
, my_df
|
|
, df0
|
|
, df1
|
|
, position_cols
|
|
, lab_bg
|
|
, lab_bg2
|
|
, lab_fg
|
|
, position)
|
|
|
|
#######################################################################
|
|
# end of script
|
|
#######################################################################
|
|
|