LSHTM_analysis/scripts/plotting/lineage_dist_combined_PS.R

303 lines
8.6 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: Lineage dist plots: ggridges
# Output: 2 SVGs for PS stability
# 1) all muts
# 2) dr_muts
##########################################################
# Installing and loading required packages
##########################################################
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("Header_TT.R")
library(ggridges)
source("combining_dfs_plotting.R")
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
#=======
# output
#=======
lineage_dist_combined = "lineage_dist_combined_PS.svg"
plot_lineage_dist_combined = paste0(plotdir,"/", lineage_dist_combined)
#========================================================================
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(my_df_u, merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
is.factor(my_df$lineage)
my_df$lineage = as.factor(my_df$lineage)
is.factor(my_df$lineage)
table(my_df$mutation_info)
# subset df with dr muts only
my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide")
table(my_df_dr$mutation_info)
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#==========================
# Plot 1: ALL Muts
# x = mcsm_values, y = dist
# fill = stability
#============================
my_plot_name = 'lineage_dist_PS.svg'
plot_lineage_duet = paste0(plotdir,"/", my_plot_name)
#===================
# Data for plots
#===================
table(my_df$lineage); str(my_df$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4"
#, "lineage5"
#, "lineage6"
#, "lineage7"
)
# uncomment as necessary
df_lin = subset(my_df, subset = lineage %in% sel_lineages )
table(df_lin$lineage)
# refactor
df_lin$lineage = factor(df_lin$lineage)
sum(table(df_lin$lineage)) #{RESULT: Total number of samples for lineage}
table(df_lin$lineage)#{RESULT: No of samples within lineage}
length(unique(df_lin$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
length(df_lin$mutationinformation)
u2 = unique(my_df$mutationinformation)
u = unique(df_lin$mutationinformation)
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df <- df_lin
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4'
#, 'Lineage 5', 'Lineage 6', 'Lineage 7'
)
names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4'
# , 'lineage5', 'lineage6', 'lineage7'
)
# check plot name
plot_lineage_duet
# output svg
#svg(plot_lineage_duet)
p1 = ggplot(df, aes(x = duet_scaled
, y = duet_outcome))+
#printFile=geom_density_ridges_gradient(
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3 ) +
facet_wrap( ~lineage
, scales = "free"
#, switch = 'x'
, labeller = labeller(lineage = my_labels) ) +
coord_cartesian( xlim = c(-1, 1)) +
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = my_als-5)
, legend.title = element_text(size = my_als)
)
print(p1)
#dev.off()
#######################################################################
# lineage distribution plot for dr_muts
#######################################################################
#==========================
# Plot 2: dr muts ONLY
# x = mcsm_values, y = dist
# fill = stability
#============================
my_plot_name_dr = 'lineage_dist_dr_muts_PS.svg'
plot_lineage_dr_duet = paste0(plotdir,"/", my_plot_name_dr)
#===================
# Data for plots
#===================
table(my_df_dr$lineage); str(my_df_dr$lineage)
# uncomment as necessary
df_lin_dr = subset(my_df_dr, subset = lineage %in% sel_lineages)
table(df_lin_dr$lineage)
# refactor
df_lin_dr$lineage = factor(df_lin_dr$lineage)
sum(table(df_lin_dr$lineage)) #{RESULT: Total number of samples for lineage}
table(df_lin_dr$lineage)#{RESULT: No of samples within lineage}
length(unique(df_lin_dr$mutationinformation))#{Result: No. of unique mutations the 4 lineages contribute to}
length(df_lin_dr$mutationinformation)
u2 = unique(my_df_dr$mutationinformation)
u = unique(df_lin_dr$mutationinformation)
check = u2[!u2%in%u]; print(check) #{Muts not present within selected lineages}
#%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df_dr <- df_lin_dr
#%%%%%%%%%%%%%%%%%%%%%%%%%
rm(df_lin_dr)
#******************
# generate distribution plot of lineages
#******************
# 2 : ggridges (good!)
my_ats = 15 # axis text size
my_als = 20 # axis label size
# check plot name
plot_lineage_dr_duet
# output svg
#svg(plot_lineage_dr_duet)
p2 = ggplot(df_dr, aes(x = duet_scaled
, y = duet_outcome))+
geom_density_ridges_gradient(aes(fill = ..x..)
#, jittered_points = TRUE
, scale = 3
, size = 0.3) +
#geom_point(aes(size = or_mychisq))+
facet_wrap( ~lineage
, scales = "free"
#, switch = 'x'
, labeller = labeller(lineage = my_labels) ) +
coord_cartesian( xlim = c(-1, 1)
#, ylim = c(0, 6)
#, clip = "off"
) +
scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4")
, name = "DUET" ) +
theme(axis.text.x = element_text(size = my_ats
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_blank()
, axis.title.x = element_blank()
, axis.title.y = element_blank()
, axis.ticks.y = element_blank()
, plot.title = element_blank()
, strip.text = element_text(size = my_als)
, legend.text = element_text(size = 10)
, legend.title = element_text(size = my_als)
#, legend.position = "none"
)
print(p2)
#dev.off()
########################################################################
#==============
# combine plot
#===============
svg(plot_lineage_dist_combined, width = 12, height = 6)
printFile = cowplot::plot_grid(p1, p2
, label_size = my_als+10)
print(printFile)
dev.off()