LSHTM_analysis/scripts/functions/corr_plot_data.R

134 lines
5.4 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: Script to format data for Correlation plots:
# corr_data_extract()
# INPUT:
# df: data with all parameters (my_use case)
# merged_df3 or merged_df2!?
# gene: [sanity check]
# drug: relates to a column name that will need to extracted
# ligand_dist_colname = LigDist_colname (variable from plotting_globals()
# colnames_to_extract = c("mutationinformation", "duet_affinity_change")
# display_colnames_key = c(mutationinformation = "MUT" , duet_affinity_change = "DUET")
# extract_scaled_cols = T or F, so that parameters with the _scaled suffix can be extracted.
# NOTE*: No formatting applied to these cols i.e display name
# RETURNS: DF
# containing all the columns required for generating downstream correlation plots
# TODO: ADD
#lineage_count_all
#lineage_count_unique
#my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
#my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
##################################################################
# LigDist_colname #from globals: plotting_globals.R
# ppi2Dist_colname #from globals: plotting_globals.R
# naDist_colname #from globals: plotting_globals.R
corr_data_extract <- function(df
, gene
, drug
#, ligand_dist_colname = LigDist_colname
, colnames_to_extract
, colnames_display_key
, extract_scaled_cols = F){
if ( missing(colnames_to_extract) || missing(colnames_display_key) ){
#if ( missing(colnames_to_extract) ){
cat("\n=========================================="
, "\nCORR PLOTS data: ALL params"
, "\n=========================================")
cat("\nExtracting default columns for"
, "\nGene name:", gene
, "\nDrug name:", drug)
geneL_normal = c("pnca")
geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
common_colnames = c(drug, "dst_mode"
, "duet_stability_change" , "ddg_foldx" , "deepddg" , "ddg_dynamut2"
, "asa" , "rsa" , "kd_values" , "rd_values"
, "maf" , "log10_or_mychisq" , "neglog_pval_fisher"
, LigDist_colname
, "consurf_score" , "snap2_score" , "provean_score"
, "ligand_affinity_change"
#, "ddg_dynamut", "ddg_encom", "dds_encom", "ddg_mcsm", "ddg_sdm", "ddg_duet"
)
display_common_colnames = c( drug, "dst_mode"
, "DUET" , "FoldX" , "DeepDDG", "Dynamut2"
, "ASA" , "RSA" , "KD" , "RD"
, "MAF" , "Log(OR)" , "-Log(P)"
, "Lig-Dist"
, "ConSurf" , "SNAP2" , "PROVEAN"
, "mCSM-lig"
# , "Dynamut" , "ENCoM-DDG" , "mCSM" , "SDM" , "DUET-d" , "ENCoM-DDS"
)
if (tolower(gene)%in%geneL_normal){
colnames_to_extract = c(common_colnames)
display_colnames = c(display_common_colnames)
corr_df = df[,colnames_to_extract]
colnames(corr_df) = display_colnames
}
if (tolower(gene)%in%geneL_ppi2){
colnames_to_extract = c(common_colnames ,"mcsm_ppi2_affinity", ppi2Dist_colname)
display_colnames = c(display_common_colnames,"mCSM-PPI2" , "PPI-Dist")
corr_df = df[,colnames_to_extract]
colnames(corr_df) = display_colnames
}
if (tolower(gene)%in%geneL_na){
colnames_to_extract = c(common_colnames,"mcsm_na_affinity", naDist_colname)
display_colnames = c(display_common_colnames, "mCSM-NA", "NA-Dist")
corr_df = df[,colnames_to_extract]
colnames(corr_df) = display_colnames
}
# [optional] arg: extract_scaled_cols
if (extract_scaled_cols){
cat("\nExtracting scaled columns as well...\n")
all_scaled_cols = colnames(merged_df3)[grep(".*scaled", colnames(merged_df3))]
colnames_to_extract = c(colnames_to_extract, all_scaled_cols)
corr_df = df[,colnames_to_extract]
colnames(corr_df) = display_colnames
}else{
colnames_to_extract = colnames_to_extract
corr_df = df[,colnames_to_extract]
colnames(corr_df) = display_colnames
}
# WORKED:
# # extract df based on gene
# corr_df = df[,colnames_to_extract]
# colnames(corr_df)
# display_colnames
#
# # arg: colnames_display_key
# colnames(corr_df)[colnames(corr_df)%in%colnames_to_extract] <- display_colnames
# colnames(corr_df)
cat("\nExtracted ncols:", ncol(corr_df)
,"\nRenaming successful")
cat("\nSneak peak...")
print(head(corr_df))
# Move drug column to the end
last_col = colnames(corr_df[ncol(corr_df)])
#corr_df_f = corr_df %>% dplyr::relocate(all_of(drug), .after = last_col)
#return(corr_df_f)
return(corr_df)
}
}