263 lines
No EOL
8.3 KiB
R
263 lines
No EOL
8.3 KiB
R
#!/usr/bin/env Rscript
|
|
#########################################################
|
|
# TASK: Prepare for correlation data
|
|
|
|
#=======================================================================
|
|
# working dir and loading libraries
|
|
getwd()
|
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|
getwd()
|
|
|
|
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
|
|
source("../functions/my_pairs_panel.R") # with lower panel turned off
|
|
source("../functions/plotting_globals.R")
|
|
source("../functions/plotting_data.R")
|
|
source("../functions/combining_dfs_plotting.R")
|
|
###########################################################
|
|
#===========
|
|
# input
|
|
#===========
|
|
#---------------------
|
|
# call: import_dirs()
|
|
#---------------------
|
|
import_dirs(drug, gene)
|
|
|
|
#---------------------------
|
|
# call: plotting_data()
|
|
#---------------------------
|
|
#if (!exists("infile_params") && exists("gene")){
|
|
if (!is.character(infile_params) && exists("gene")){ # when running as cmd
|
|
#in_filename_params = paste0(tolower(gene), "_all_params.csv")
|
|
in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid
|
|
infile_params = paste0(outdir, "/", in_filename_params)
|
|
cat("\nInput file for mcsm comb data not specified, assuming filename: ", infile_params, "\n")
|
|
}
|
|
|
|
# Input 1: read <gene>_comb_afor.csv
|
|
cat("\nReading mcsm combined data file: ", infile_params)
|
|
mcsm_df = read.csv(infile_params, header = T)
|
|
pd_df = plotting_data(mcsm_df)
|
|
my_df_u = pd_df[[1]] # this forms one of the input for combining_dfs_plotting()
|
|
|
|
#--------------------------------
|
|
# call: combining_dfs_plotting()
|
|
#--------------------------------
|
|
#if (!exists("infile_metadata") && exists("gene")){
|
|
if (!is.character(infile_metadata) && exists("gene")){ # when running as cmd
|
|
in_filename_metadata = paste0(tolower(gene), "_metadata.csv") # part combined for gid
|
|
infile_metadata = paste0(outdir, "/", in_filename_metadata)
|
|
cat("\nInput file for gene metadata not specified, assuming filename: ", infile_metadata, "\n")
|
|
}
|
|
|
|
# Input 2: read <gene>_meta data.csv
|
|
cat("\nReading meta data file: ", infile_metadata)
|
|
|
|
gene_metadata <- read.csv(infile_metadata
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
all_plot_dfs = combining_dfs_plotting(my_df_u
|
|
, gene_metadata
|
|
, lig_dist_colname = 'ligand_distance'
|
|
, lig_dist_cutoff = 10)
|
|
|
|
cat(paste0("Directories imported:"
|
|
, "\ndatadir:", datadir
|
|
, "\nindir:", indir
|
|
, "\noutdir:", outdir
|
|
, "\nplotdir:", plotdir))
|
|
|
|
cat(paste0("Variables imported:"
|
|
, "\ndrug:", drug
|
|
, "\ngene:", gene
|
|
, "\ngene_match:", gene_match
|
|
, "\nAngstrom symbol:", angstroms_symbol
|
|
, "\nNo. of duplicated muts:", dup_muts_nu
|
|
, "\nNA count for ORs:", na_count
|
|
, "\nNA count in df2:", na_count_df2
|
|
, "\nNA count in df3:", na_count_df3))
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
# corr_ps_df2
|
|
# corr_lig_df2
|
|
|
|
####################################################################
|
|
# end of loading libraries and functions
|
|
####################################################################
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
#df_ps = merged_df3
|
|
df_ps = merged_df2
|
|
|
|
#df_lig = merged_df3_lig
|
|
df_lig = merged_df2_lig
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for plots #
|
|
########################################################################
|
|
|
|
#======================
|
|
# adding log cols
|
|
#======================
|
|
df_ps$log10_or_mychisq = log10(df_ps$or_mychisq)
|
|
df_ps$neglog_pval_fisher = -log10(df_ps$pval_fisher)
|
|
|
|
df_ps$log10_or_kin = log10(df_ps$or_kin)
|
|
df_ps$neglog_pwald_kin = -log10(df_ps$pwald_kin)
|
|
|
|
#df_ps$mutation_info_labels = ifelse(df_ps$mutation_info == dr_muts_col, 1, 0)
|
|
|
|
#===============================
|
|
# Data for Correlation plots:PS
|
|
#===============================
|
|
# subset data to generate pairwise correlations
|
|
cols_to_select = c("mutationinformation"
|
|
, "duet_scaled"
|
|
, "foldx_scaled"
|
|
#, "mutation_info_labels"
|
|
, "asa"
|
|
, "rsa"
|
|
, "rd_values"
|
|
, "kd_values"
|
|
, "log10_or_mychisq"
|
|
, "neglog_pval_fisher"
|
|
, "or_kin"
|
|
, "neglog_pwald_kin"
|
|
, "af"
|
|
#, "af_kin"
|
|
, "duet_outcome"
|
|
, drug)
|
|
|
|
corr_data_ps = df_ps[cols_to_select]
|
|
|
|
dim(corr_data_ps)
|
|
|
|
# assign nice colnames (for display)
|
|
my_corr_colnames = c("Mutation"
|
|
, "DUET"
|
|
, "Foldx"
|
|
#, "Mutation class"
|
|
, "ASA"
|
|
, "RSA"
|
|
, "RD"
|
|
, "KD"
|
|
, "Log (OR)"
|
|
, "-Log (P)"
|
|
, "Adjusted (OR)"
|
|
, "-Log (P wald)"
|
|
, "AF"
|
|
, "AF_kin"
|
|
, "duet_outcome"
|
|
, drug)
|
|
|
|
length(my_corr_colnames)
|
|
|
|
colnames(corr_data_ps)
|
|
colnames(corr_data_ps) <- my_corr_colnames
|
|
colnames(corr_data_ps)
|
|
|
|
start = 1
|
|
end = which(colnames(corr_data_ps) == drug); end # should be the last column
|
|
offset = 1
|
|
|
|
#corr_ps_df2 = corr_data_ps[start:(end-offset)] # without drug
|
|
corr_ps_df2 = corr_data_ps[start:end]
|
|
head(corr_ps_df2)
|
|
|
|
#--------------------------
|
|
# short_df ps: merged_df3
|
|
#--------------------------
|
|
corr_ps_df3 = corr_ps_df2[!duplicated(corr_ps_df2$Mutation),]
|
|
|
|
na_or = sum(is.na(corr_ps_df3$`Log (OR)`))
|
|
check1 = nrow(corr_ps_df3) - na_or
|
|
|
|
na_adj_or = sum(is.na(corr_ps_df3$`adjusted (OR)`))
|
|
check2 = nrow(corr_ps_df3) - na_adj_or
|
|
|
|
#if ( nrow(corr_ps_df3) == nrow(merged_df3) ) {
|
|
# cat( "PASS: No. of rows for corr_ps_df3 match" )
|
|
#}if ( nrow(merged_df3_comp) == check1 ){
|
|
# cat( "PASS: No. of OR values checked" )
|
|
#}
|
|
|
|
################################################################################################
|
|
#=================================
|
|
# Data for Correlation plots: LIG
|
|
#=================================
|
|
table(df_lig$ligand_outcome)
|
|
|
|
df_lig$log10_or_mychisq = log10(df_lig$or_mychisq)
|
|
df_lig$neglog_pval_fisher = -log10(df_lig$pval_fisher)
|
|
|
|
df_lig$log10_or_kin = log10(df_lig$or_kin)
|
|
df_lig$neglog_pwald_kin = -log10(df_lig$pwald_kin)
|
|
|
|
# subset data to generate pairwise correlations
|
|
cols_to_select = c("mutationinformation"
|
|
, "affinity_scaled"
|
|
#, "mutation_info_labels"
|
|
, "asa"
|
|
, "rsa"
|
|
, "rd_values"
|
|
, "kd_values"
|
|
, "log10_or_mychisq"
|
|
, "neglog_pval_fisher"
|
|
, "or_kin"
|
|
, "neglog_pwald_kin"
|
|
, "af"
|
|
, "af_kin"
|
|
, "ligand_outcome"
|
|
, drug)
|
|
|
|
corr_data_lig = df_lig[, cols_to_select]
|
|
|
|
|
|
dim(corr_data_lig)
|
|
|
|
# assign nice colnames (for display)
|
|
my_corr_colnames = c("Mutation"
|
|
, "Ligand Affinity"
|
|
#, "Mutation class"
|
|
, "ASA"
|
|
, "RSA"
|
|
, "RD"
|
|
, "KD"
|
|
, "Log (OR)"
|
|
, "-Log (P)"
|
|
, "Adjusted (OR)"
|
|
, "-Log (P wald)"
|
|
, "AF"
|
|
, "AF_kin"
|
|
, "ligand_outcome"
|
|
, drug)
|
|
|
|
length(my_corr_colnames)
|
|
|
|
colnames(corr_data_lig)
|
|
colnames(corr_data_lig) <- my_corr_colnames
|
|
colnames(corr_data_lig)
|
|
|
|
start = 1
|
|
end = which(colnames(corr_data_lig) == drug); end # should be the last column
|
|
offset = 1
|
|
|
|
#corr_lig_df2 = corr_data_lig[start:(end-offset)] # without drug
|
|
corr_lig_df2 = corr_data_lig[start:end]
|
|
head(corr_lig_df2)
|
|
|
|
#-----------------
|
|
# short_df lig: merged_df3_lig
|
|
#-----------------
|
|
|
|
corr_lig_df3 = corr_lig_df2[!duplicated(corr_lig_df2$Mutation),]
|
|
|
|
#######################################################
|
|
rm(merged_df2, merged_df2_lig, merged_df3, merged_df3_lig
|
|
, merged_df2_comp , merged_df3_comp, merged_df2_comp_lig, merged_df3_comp_lig
|
|
, corr_data_ps, corr_data_lig) |