LSHTM_analysis/scripts/combining_test.py

231 lines
7.8 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: change filename 2(mcsm normalised data)
# to be consistent like (pnca_complex_mcsm_norm.csv) : changed manually, but ensure this is done in the mcsm pipeline
#=======================================================================
# Task: combine 2 dfs with aa position as linking column
# Input: 2 dfs
# <gene.lower()>_complex_mcsm_norm.csv
# <gene.lower()>_foldx.csv
# Output: .csv of all 2 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
import numpy as np
#from varname import nameof
import argparse
from combining import combine_stability_dfs
from combining import detect_common_cols
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
#=======================================================================
#%% command line args
#arg_parser = argparse.ArgumentParser()
#arg_parser.add_argument('-d', '--drug', help='drug name', default = 'pyrazinamide')
#arg_parser.add_argument('-g', '--gene', help='gene name', default = 'pncA') # case sensitive
#args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
drug = 'pyrazinamide'
gene = 'pncA'
gene_match = gene + '_p.'
#drug = args.drug
#gene = args.gene
#======
# dirs
#======
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/' + 'input'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
#in_filename_linking = gene.lower() + '_linking_df.csv'
#in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
#in_filename_foldx = gene.lower() + '_foldx.csv'
in_filename_dssp = gene.lower() + '_dssp.csv'
in_filename_kd = gene.lower() + '_kd.csv'
#in_filename_rd = gene.lower() + '_rd.csv'
in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info.csv'
in_filename_afor = gene.lower() + '_af_or.csv'
in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
#infile_linking = outdir + '/' + in_filename_linking
#infile_mcsm = outdir + '/' + in_filename_mcsm
#infile_foldx = outdir + '/' + in_filename_foldx
infile_dssp = outdir + '/' + in_filename_dssp
infile_kd = outdir + '/' + in_filename_kd
#infile_rd = outdir + '/' + in_filename_rd
infile_snpinfo = indir + '/' + in_filename_snpinfo
infile_afor = outdir + '/' + in_filename_afor
infile_afor_kin = outdir + '/' + in_filename_afor_kin
print('\nInput path:', outdir
# , '\nInput filename1:', infile_mcsm
# , '\nInput filename2:', infile_foldx
, '\nInput filename2:', infile_dssp
, '\nInput filename2:', infile_kd
# , '\nInput filename2:', infile_rd
, '\nInput filename snp info:', infile_snpinfo
, '\nInput filename af or:', infile_afor
, '\nInput filename afor kinship:', infile_afor_kin
, '\n============================================================')
#=======
# output
#=======
#out_filename_comb = gene.lower() + '_struct_params_TEST.csv'
#outfile_comb = outdir + '/' + out_filename_comb
#print('Output filename:', outfile_comb
# , '\n============================================================')
o_join = 'outer'
l_join = 'left'
r_join = 'right'
i_join = 'inner'
#del(in_filename_dssp, in_filename_foldx)
# end of variable assignment for input and output files
#=======================================================================
# call function to detect common cols
#=======================================================================
def main():
print('Reading input files:')
#dssp_df = pd.read_csv(infile_dssp, sep = ',')
#dssp_df.columns = dssp_df.columns.str.lower()
#kd_df = pd.read_csv(infile_kd, sep = ',')
#kd_df.columns = kd_df.columns.str.lower()
# print('Dimension left df:', dssp_df.shape
# , '\nDimension right_df:', kd_df.shape
# , '\njoin type:', o_join
# , '\n=========================================================')
# detect common cols
#merging_cols = detect_common_cols(dssp_df, kd_df)
#print('Length of common cols:', len(merging_cols)
# , '\nmerging column/s:', merging_cols, 'type:', type(merging_cols)
# , '\ndtypes in merging columns:', dssp_df[merging_cols].dtypes)
#combined_df1 = combine_stability_dfs(dssp_df, kd_df, my_join = o_join)
#print('Dimensions of combined df:', combined_df1.shape
# , '\nsneak peak:', combined_df1.head()
# , '\ndtypes in cols:\n', combined_df1.dtypes)
#=============================================================================
afor_df = pd.read_csv(infile_afor, sep = ',')
afor_df.columns = afor_df.columns.str.lower()
snpinfo_df = pd.read_csv(infile_snpinfo, sep = ',')
snpinfo_df.columns = snpinfo_df.columns.str.lower()
# print('Dimension df1:', afor_df.shape
# , '\nDimension df2:', snpinfo_df.shape
# , '\njoin type:', l_join
# , '\n=========================================================')
# detect common cols
merging_cols = detect_common_cols(afor_df, snpinfo_df)
#print('Length of common cols:', len(merging_cols)
# , '\nmerging column/s:', merging_cols, 'type:', type(merging_cols)
# , '\ndtypes in merging columns:', snpinfo_df[merging_cols].dtypes)
comb_afor_snpinfo = combine_stability_dfs(afor_df, snpinfo_df, my_join = l_join)
#print('Dimensions of combined df:', comb_afor_snpinfo.shape
# , '\nsneak peak:', comb_afor_snpinfo.head()
# , '\ndtypes in cols:\n', comb_afor_snpinfo.dtypes)
#=============================================================================
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
afor_kin_df.columns = afor_kin_df.columns.str.lower()
# detect common cols
merging_cols = detect_common_cols(comb_afor_snpinfo, afor_kin_df)
# comb2 = combine_stability_dfs(comb_afor_snpinfo, afor_kin_df, my_join = o_join)
#print('Dimensions of combined df:', comb2.shape
# , '\nsneak peak:', comb2.head()
# , '\ndtypes in cols:\n', comb2.dtype)
if __name__ == '__main__':
main()
#=======================================================================
#%% end of script
#hardocoded test
dssp_df = pd.read_csv(infile_dssp, sep = ',')
kd_df = pd.read_csv(infile_kd, sep = ',')
afor_df = pd.read_csv(infile_afor, sep = ',')
snpinfo_df = pd.read_csv(infile_snpinfo, sep = ',')
afor_kin_df = pd.read_csv(infile_afor_kin, sep = ',')
merging_cols = ['alt_allele',
'chr_num_allele',
'chromosome_number',
'gene_id',
'gene_number',
'mut_info',
'mut_region',
'mut_type',
'mutant_type',
'mutationinformation',
'position',
'ref_allele',
'wild_type']
print('doing thing')
comb_afor_snpinfo = pd.merge(afor_df, snpinfo_df, on = 'mutation', how = 'inner')
comb2 = pd.merge(comb_afor_snpinfo, afor_kin_df, on = merging_cols, how = i_join)
comb3 = comb2.drop_duplicates(subset=merging_cols, keep = 'first')
common = np.intersect1d(comb_afor_snpinfo['mutationinformation'], afor_kin_df['mutationinformation'])
print('comb3 dim:', comb3.shape
, '\ncomb2 dim:', comb2.shape
, '\ndim of df1:', comb_afor_snpinfo.shape
, '\ndim of df2:', afor_kin_df.shape
, '\ncommon vals:', len(common))
print('expected:\n')
bar = combine_stability_dfs(comb_afor_snpinfo, afor_kin_df, my_join = o_join)
print('XXXXXX\n:', bar.shape)
#bar = np.intersect1d(comb_afor_snpinfo[merging_cols[0]], afor_kin_df[merging_cols[0]])
#print('common values:',len(bar))
#comb2 = combine_stability_dfs(comb_afor_snpinfo, afor_kin_df, my_join = o_join)
print ('thing finished')