LSHTM_analysis/meta_data_analysis/pnca_AF_and_OR_calcs.R
2020-01-08 16:15:33 +00:00

241 lines
6.5 KiB
R

getwd()
setwd("/git/github/git/LSHTM_analysis/meta_data_analysis")
getwd()
#===============
# Step 1: read GWAS raw data stored in Data_original/
#===============
infile = read.csv(file.choose(), stringsAsFactors = F)
raw_data = infile[,c("id"
, "pyrazinamide"
, "dr_mutations_pyrazinamide"
, "other_mutations_pyrazinamide")]
#####
# 1a: exclude na
#####
raw_data = raw_data[!is.na(raw_data$pyrazinamide),]
total_samples = length(unique(raw_data$id))
print(total_samples)
# sanity check: should be true
is.numeric(total_samples)
#####
# 1b: combine the two mutation columns
#####
raw_data$all_mutations_pyrazinamide = paste(raw_data$dr_mutations_pyrazinamide
, raw_data$other_mutations_pyrazinamide)
head(raw_data$all_mutations_pyrazinamide)
#####
# 1c: create yet another column that contains all the mutations but in lower case
#####
raw_data$all_muts_pnca = tolower(raw_data$all_mutations_pyrazinamide)
# sanity checks
table(grepl("pnca_p",raw_data$all_muts_pnca))
# sanity check: should be TRUE
sum(table(grepl("pnca_p",raw_data$all_muts_pnca))) == total_samples
# set up variables: can be used for logistic regression as well
i = "pnca_p.ala134gly" # has a NA, should NOT exist
table(grepl(i,raw_data$all_muts_pnca))
i = "pnca_p.trp68gly"
table(grepl(i,raw_data$all_muts_pnca))
mut = grepl(i,raw_data$all_muts_pnca)
dst = raw_data$pyrazinamide
table(mut, dst)
#chisq.test(table(mut,dst))
#fisher.test(table(mut, dst))
#table(mut)
###### read list of muts to calculate OR for (fname3 from pnca_data_extraction.py)
pnca_snps_or = read.csv(file.choose()
, stringsAsFactors = F
, header = T)
# extract unique snps to iterate over for AF and OR calcs
# total no of unique snps
# AF and OR calculations
pnca_snps_unique = unique(pnca_snps_or$mutation)
# Define OR function
x = as.numeric(mut)
y = dst
or = function(x,y){
tab = as.matrix(table(x,y))
a = tab[2,2]
if (a==0){ a<-0.5}
b = tab[2,1]
if (b==0){ b<-0.5}
c = tab[1,2]
if (c==0){ c<-0.5}
d = tab[1,1]
if (d==0){ d<-0.5}
(a/b)/(c/d)
}
dst = raw_data$pyrazinamide
ors = sapply(pnca_snps_unique,function(m){
mut = grepl(m,raw_data$all_muts_pnca)
or(mut,dst)
})
ors
pvals = sapply(pnca_snps_unique,function(m){
mut = grepl(m,raw_data$all_muts_pnca)
fisher.test(mut,dst)$p.value
})
pvals
afs = sapply(pnca_snps_unique,function(m){
mut = grepl(m,raw_data$all_muts_pnca)
mean(mut)
})
afs
# check ..hmmm
afs['pnca_p.trp68gly']
afs['pnca_p.gln10pro']
afs['pnca_p.leu4ser']
#plot(density(log(ors)))
#plot(-log10(pvals))
#hist(log(ors)
# ,breaks = 100
# )
# subset df cols to add to the calc param df
pnca_snps_cols = pnca_snps_or[c('mutation_info', 'mutation', 'Mutationinformation')]
pnca_snps_cols = pnca_snps_cols[!duplicated(pnca_snps_cols$mutation),]
rownames(pnca_snps_cols) = pnca_snps_cols$mutation
head(rownames(pnca_snps_cols))
#snps_with_AF_and_OR
# combine
comb_AF_and_OR = data.frame(ors, pvals, afs)
head(rownames(comb_AF_and_OR))
# sanity checks: should be the same
dim(comb_AF_and_OR); dim(pnca_snps_cols)
table(rownames(comb_AF_and_OR)%in%rownames(pnca_snps_cols))
table(rownames(pnca_snps_cols)%in%rownames(comb_AF_and_OR))
# merge the above two df whose dim you checked
snps_with_AF_and_OR = merge(comb_AF_and_OR, pnca_snps_cols
, by = "row.names"
# , all.x = T
)
#rm(pnca_snps_cols, pnca_snps_or, raw_data)
#===============
# Step 3: Read data file where you will add the calculated OR
# Note: this is the big file with one-many relationship between snps and lineages
# i.e fname4 from 'pnca_extraction.py'
#===============
my_data = read.csv(file.choose()
, row.names = 1
, stringsAsFactors = FALSE)
head(my_data)
length(unique(my_data$id))
# check if first col is 'id': should be TRUE
colnames(my_data)[1] == 'id'
# sanity check
head(my_data$mutation)
# FILES TO MERGE:
# comb_AF_and_OR: file containing OR
# my_data = big meta data file
# linking column: mutation
head(my_data)
merged_df = merge(my_data # big file
, snps_with_AF_and_OR # small (afor file)
, by = "mutation"
, all.x = T) # because you want all the entries of the meta data
# sanity checks: should be True
# FIXME: I have checked this manually, but make it so it is a pass or a fail!
comb_AF_and_OR[rownames(comb_AF_and_OR) == "pnca_p.gln10pro",]$ors
merged_df[merged_df$Mutationinformation.x == "Q10P",]$ors
merged_df[merged_df$Mutationinformation.x == "Q10P",]
# sanity check: very important!
colnames(merged_df)
table(merged_df$mutation_info.x == merged_df$mutation_info.y)
#FIXME: what happened to other 7 and FALSE
table(merged_df$Mutationinformation.x == merged_df$Mutationinformation.y)
# problem
identical(merged_df$Mutationinformation.x, merged_df$Mutationinformation.y)
#merged_df[merged_df$Mutationinformation.x != merged_df$Mutationinformation.y,]
#throw away the y because that is a smaller df
d1 = which(colnames(merged_df) == "mutation_info.y") #21
d2 = which(colnames(merged_df) == "Mutationinformation.y") #22
merged_df2 = merged_df[-c(d1, d2)] #3093 20
colnames(merged_df2)
# rename cols
colnames(merged_df2)[colnames(merged_df2)== "mutation_info.x"] <- "mutation_info"
colnames(merged_df2)[colnames(merged_df2)== "Mutationinformation.x"] <- "Mutationinformation"
colnames(merged_df2)
# should be 0
sum(is.na(merged_df2$Mutationinformation))
# count na in each column
na_count = sapply(merged_df2, function(y) sum(length(which(is.na(y))))); na_count
# only some or and Af should be NA
#Row.names ors pvals afs
#81 81 81 81
colnames(merged_df2)[colnames(merged_df2)== "ors"] <- "OR"
colnames(merged_df2)[colnames(merged_df2)== "afs"] <- "AF"
colnames(merged_df2)[colnames(merged_df2)== "pvals"] <- "pvalue"
colnames(merged_df2)
# add log OR and neglog pvalue
merged_df2$logor = log(merged_df2$OR)
is.numeric(merged_df2$logor)
merged_df2$neglog10pvalue = -log10(merged_df2$pvalue)
is.numeric(merged_df2$neglog10pvalue)
# write file out
#write.csv(merged_df, "../Data/meta_data_with_AFandOR_JP_TT.csv")
# define output variables
drug = 'pyrazinamide'
out_dir = paste0("../mcsm_analysis/",drug,"/Data/")
outFile = "meta_data_with_AFandOR.csv"
output_filename = paste0(outdir, outFile)
write.csv(merged_df2, output_filename
, row.names = F)