LSHTM_analysis/scripts/ml/functions/GetMLData.py

645 lines
No EOL
25 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Mar 6 13:41:54 2022
@author: tanu
"""
#https://stackoverflow.com/questions/51695322/compare-multiple-algorithms-with-sklearn-pipeline
import os, sys
import pandas as pd
import numpy as np
print(np.__version__)
print(pd.__version__)
import pprint as pp
from copy import deepcopy
from collections import Counter
from sklearn.impute import KNNImputer as KNN
from imblearn.over_sampling import RandomOverSampler
from imblearn.under_sampling import RandomUnderSampler
from imblearn.over_sampling import SMOTE
from sklearn.datasets import make_classification
from imblearn.combine import SMOTEENN
from imblearn.combine import SMOTETomek
from imblearn.over_sampling import SMOTENC
from imblearn.under_sampling import EditedNearestNeighbours
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
from sklearn.pipeline import Pipeline, make_pipeline
import argparse
import re
def getmldata(gene, drug
, data_combined_model = False
, use_or = False
, omit_all_genomic_features = False
, write_maskfile = False
, write_outfile = False):
#%% FOR LATER: Combine ED logo data
#%% constructuing genomic feature group
#========================
# FG: Genomic features
#========================
X_gn_maf_Fnum = ['maf']
#X_gn_or_Fnum = ['logorI', 'or_rawI', 'or_mychisq', 'or_logistic', 'or_fisher', 'pval_fisher']
X_gn_linegae_Fnum = ['lineage_proportion'
, 'dist_lineage_proportion'
#, 'lineage' # could be included as a category but it has L2;L4 formatting
, 'lineage_count_all'
, 'lineage_count_unique']
# X_gn_Fcat = ['drtype_mode_labels' # beware then you can't use it to predict [USED it for uq_v1, not v2]
# #, 'gene_name'] # will be required for the combined stuff
#X_gn_Fcat = []
if data_combined_model:
X_geneF = ['gene_name']
else:
X_geneF = []
if use_or:
X_gn_or_Fnum = ['logorI']
else:
X_gn_or_Fnum = []
if omit_all_genomic_features:
print('\nOmitting all genomic features (n):', len(X_gn_maf_Fnum) + len(X_gn_or_Fnum) + len(X_gn_linegae_Fnum) + len(X_geneF))
X_genomicFN = []
if use_or:
sys.exit('\nError: omitting genomic feature and using odds ratio are mutually exclusive')
else:
X_genomicFN = X_gn_maf_Fnum + X_gn_or_Fnum + X_gn_linegae_Fnum + X_geneF
#%%
###########################################################################
homedir = os.path.expanduser("~")
geneL_basic = ['pnca']
geneL_na = ['gid']
geneL_na_ppi2 = ['rpob']
geneL_ppi2 = ['alr', 'embb', 'katg']
#num_type = ['int64', 'float64']
num_type = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64']
cat_type = ['object', 'bool']
#==============
# directories
#==============
datadir = homedir + '/git/Data/'
indir = datadir + drug + '/input/'
outdir = datadir + drug + '/output/'
outdir_ml = outdir + 'ml/'
#==========================
# outfile for ML training:
#==========================
outFile_ml = outdir_ml + gene.lower() + '_training_data.csv'
outFile_mask_ml = outdir_ml + gene.lower() + '_mask_check.csv'
#=======
# input
#=======
#---------
# File 1
#---------
infile_ml1 = outdir + gene.lower() + '_merged_df3.csv'
#infile_ml2 = outdir + gene.lower() + '_merged_df2.csv'
my_features_df = pd.read_csv(infile_ml1, index_col = 0)
my_features_df = my_features_df .reset_index(drop = True)
my_features_df.index
my_features_df.dtypes
mycols = my_features_df.columns
#---------
# File 2
#---------
infile_aaindex = outdir + 'aa_index/' + gene.lower() + '_aa.csv'
aaindex_df = pd.read_csv(infile_aaindex, index_col = 0)
aaindex_df.dtypes
#-----------
# check for non-numerical columns
#-----------
if any(aaindex_df.dtypes==object):
print('\naaindex_df contains non-numerical data')
aaindex_df_object = aaindex_df.select_dtypes(include = cat_type)
print('\nTotal no. of non-numerial columns:', len(aaindex_df_object.columns))
expected_aa_ncols = len(aaindex_df.columns) - len(aaindex_df_object.columns)
#-----------
# Extract numerical data only
#-----------
print('\nSelecting numerical data only')
aaindex_df = aaindex_df.select_dtypes(include = num_type)
#---------------------------
# aaindex: sanity check 1
#---------------------------
if len(aaindex_df.columns) == expected_aa_ncols:
print('\nPASS: successfully selected numerical columns only for aaindex_df')
else:
print('\nFAIL: Numbers mismatch'
, '\nExpected ncols:', expected_aa_ncols
, '\nGot:', len(aaindex_df.columns))
#---------------
# check for NA
#---------------
print('\nNow checking for NA in the remaining aaindex_cols')
c1 = aaindex_df.isna().sum()
c2 = c1.sort_values(ascending=False)
print('\nCounting aaindex_df cols with NA'
, '\nncols with NA:', sum(c2>0), 'columns'
, '\nDropping these...'
, '\nOriginal ncols:', len(aaindex_df.columns)
)
aa_df = aaindex_df.dropna(axis=1)
print('\nRevised df ncols:', len(aa_df.columns))
c3 = aa_df.isna().sum()
c4 = c3.sort_values(ascending=False)
print('\nChecking NA in revised df...')
if sum(c4>0):
sys.exit('\nFAIL: aaindex_df still contains cols with NA, please check and drop these before proceeding...')
else:
print('\nPASS: cols with NA successfully dropped from aaindex_df'
, '\nProceeding with combining aa_df with other features_df')
#---------------------------
# aaindex: sanity check 2
#---------------------------
expected_aa_ncols2 = len(aaindex_df.columns) - sum(c2>0)
if len(aa_df.columns) == expected_aa_ncols2:
print('\nPASS: ncols match'
, '\nExpected ncols:', expected_aa_ncols2
, '\nGot:', len(aa_df.columns))
else:
print('\nFAIL: Numbers mismatch'
, '\nExpected ncols:', expected_aa_ncols2
, '\nGot:', len(aa_df.columns))
# Important: need this to identify aaindex cols
aa_df_cols = aa_df.columns
print('\nTotal no. of columns in clean aa_df:', len(aa_df_cols))
###############################################################################
#%% Combining my_features_df and aaindex_df
#===========================
# Merge my_df + aaindex_df
#===========================
if aa_df.columns[aa_df.columns.isin(my_features_df.columns)] == my_features_df.columns[my_features_df.columns.isin(aa_df.columns)]:
print('\nMerging on column: mutationinformation')
if len(my_features_df) == len(aa_df):
expected_nrows = len(my_features_df)
print('\nProceeding to merge, expected nrows in merged_df:', expected_nrows)
else:
sys.exit('\nNrows mismatch, cannot merge. Please check'
, '\nnrows my_df:', len(my_features_df)
, '\nnrows aa_df:', len(aa_df))
#-----------------
# Reset index: mutationinformation
# Very important for merging
#-----------------
aa_df = aa_df.reset_index()
expected_ncols = len(my_features_df.columns) + len(aa_df.columns) - 1 # for the no. of merging col
#-----------------
# Merge: my_features_df + aa_df
#-----------------
merged_df = pd.merge(my_features_df
, aa_df
, on = 'mutationinformation')
#---------------------------
# aaindex: sanity check 3
#---------------------------
if len(merged_df.columns) == expected_ncols:
print('\nPASS: my_features_df and aa_df successfully combined'
, '\nnrows:', len(merged_df)
, '\nncols:', len(merged_df.columns))
else:
sys.exit('\nFAIL: could not combine my_features_df and aa_df'
, '\nCheck dims and merging cols!')
#--------
# Reassign so downstream code doesn't need to change
#--------
my_df = merged_df.copy()
#%% Data: my_df
# Check if non structural pos have crept in
# IDEALLY remove from source! But for rpoB do it here
# Drop NA where numerical cols have them
if gene.lower() in geneL_na_ppi2:
#D1148 get rid of
na_index = my_df['mutationinformation'].index[my_df['mcsm_na_affinity'].apply(np.isnan)]
my_df = my_df.drop(index=na_index)
###########################################################################
#%% Add lineage calculation columns
#FIXME: Check if this can be imported from config?
total_mtblineage_uc = 8
lineage_colnames = ['lineage_list_all', 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique', 'lineage_multimode']
#bar = my_df[lineage_colnames]
my_df['lineage_proportion'] = my_df['lineage_count_unique']/my_df['lineage_count_all']
my_df['dist_lineage_proportion'] = my_df['lineage_count_unique']/total_mtblineage_uc
###########################################################################
#%% Active site annotation column
# change from numberic to categorical
if my_df['active_site'].dtype in num_type:
my_df['active_site'] = my_df['active_site'].astype(object)
my_df['active_site'].dtype
#%% AA property change
#--------------------
# Water prop change
#--------------------
my_df['water_change'] = my_df['wt_prop_water'] + str('_to_') + my_df['mut_prop_water']
my_df['water_change'].value_counts()
water_prop_changeD = {
'hydrophobic_to_neutral' : 'change'
, 'hydrophobic_to_hydrophobic' : 'no_change'
, 'neutral_to_neutral' : 'no_change'
, 'neutral_to_hydrophobic' : 'change'
, 'hydrophobic_to_hydrophilic' : 'change'
, 'neutral_to_hydrophilic' : 'change'
, 'hydrophilic_to_neutral' : 'change'
, 'hydrophilic_to_hydrophobic' : 'change'
, 'hydrophilic_to_hydrophilic' : 'no_change'
}
my_df['water_change'] = my_df['water_change'].map(water_prop_changeD)
my_df['water_change'].value_counts()
#--------------------
# Polarity change
#--------------------
my_df['polarity_change'] = my_df['wt_prop_polarity'] + str('_to_') + my_df['mut_prop_polarity']
my_df['polarity_change'].value_counts()
polarity_prop_changeD = {
'non-polar_to_non-polar' : 'no_change'
, 'non-polar_to_neutral' : 'change'
, 'neutral_to_non-polar' : 'change'
, 'neutral_to_neutral' : 'no_change'
, 'non-polar_to_basic' : 'change'
, 'acidic_to_neutral' : 'change'
, 'basic_to_neutral' : 'change'
, 'non-polar_to_acidic' : 'change'
, 'neutral_to_basic' : 'change'
, 'acidic_to_non-polar' : 'change'
, 'basic_to_non-polar' : 'change'
, 'neutral_to_acidic' : 'change'
, 'acidic_to_acidic' : 'no_change'
, 'basic_to_acidic' : 'change'
, 'basic_to_basic' : 'no_change'
, 'acidic_to_basic' : 'change'}
my_df['polarity_change'] = my_df['polarity_change'].map(polarity_prop_changeD)
my_df['polarity_change'].value_counts()
#--------------------
# Electrostatics change
#--------------------
my_df['electrostatics_change'] = my_df['wt_calcprop'] + str('_to_') + my_df['mut_calcprop']
my_df['electrostatics_change'].value_counts()
calc_prop_changeD = {
'non-polar_to_non-polar' : 'no_change'
, 'non-polar_to_polar' : 'change'
, 'polar_to_non-polar' : 'change'
, 'non-polar_to_pos' : 'change'
, 'neg_to_non-polar' : 'change'
, 'non-polar_to_neg' : 'change'
, 'pos_to_polar' : 'change'
, 'pos_to_non-polar' : 'change'
, 'polar_to_polar' : 'no_change'
, 'neg_to_neg' : 'no_change'
, 'polar_to_neg' : 'change'
, 'pos_to_neg' : 'change'
, 'pos_to_pos' : 'no_change'
, 'polar_to_pos' : 'change'
, 'neg_to_polar' : 'change'
, 'neg_to_pos' : 'change'
}
my_df['electrostatics_change'] = my_df['electrostatics_change'].map(calc_prop_changeD)
my_df['electrostatics_change'].value_counts()
#--------------------
# Summary change: Create a combined column summarising these three cols
#--------------------
detect_change = 'change'
check_prop_cols = ['water_change', 'polarity_change', 'electrostatics_change']
#my_df['aa_prop_change'] = (my_df.values == detect_change).any(1).astype(int)
my_df['aa_prop_change'] = (my_df[check_prop_cols].values == detect_change).any(1).astype(int)
my_df['aa_prop_change'].value_counts()
my_df['aa_prop_change'].dtype
my_df['aa_prop_change'] = my_df['aa_prop_change'].map({1:'change'
, 0: 'no_change'})
my_df['aa_prop_change'].value_counts()
my_df['aa_prop_change'].dtype
#%% IMPUTE values for OR [check script for exploration: UQ_or_imputer]
#--------------------
# Impute OR values
#--------------------
#or_cols = ['or_mychisq', 'log10_or_mychisq', 'or_fisher']
sel_cols = ['mutationinformation', 'or_mychisq', 'log10_or_mychisq']
or_cols = ['or_mychisq', 'log10_or_mychisq']
print("count of NULL values before imputation\n")
print(my_df[or_cols].isnull().sum())
my_dfI = pd.DataFrame(index = my_df['mutationinformation'] )
my_dfI = pd.DataFrame(KNN(n_neighbors=3, weights="uniform").fit_transform(my_df[or_cols])
, index = my_df['mutationinformation']
, columns = or_cols )
my_dfI.columns = ['or_rawI', 'logorI']
my_dfI.columns
my_dfI = my_dfI.reset_index(drop = False) # prevents old index from being added as a column
my_dfI.head()
print("count of NULL values AFTER imputation\n")
print(my_dfI.isnull().sum())
#-------------------------------------------
# OR df Merge: with original based on index
#-------------------------------------------
#my_df['index_bm'] = my_df.index
mydf_imputed = pd.merge(my_df
, my_dfI
, on = 'mutationinformation')
#mydf_imputed = mydf_imputed.set_index(['index_bm'])
my_df['log10_or_mychisq'].isna().sum()
mydf_imputed['log10_or_mychisq'].isna().sum()
mydf_imputed['logorI'].isna().sum() # should be 0
len(my_df.columns)
len(mydf_imputed.columns)
#-----------------------------------------
# REASSIGN my_df after imputing OR values
#-----------------------------------------
my_df = mydf_imputed.copy()
if my_df['logorI'].isna().sum() == 0:
print('\nPASS: OR values imputed, data ready for ML')
else:
sys.exit('\nFAIL: something went wrong, Data not ready for ML. Please check upstream!')
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#---------------------------------------
# TODO: try other imputation like MICE
#---------------------------------------
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%########################################################################
#==========================
# Data for ML
#==========================
my_df_ml = my_df.copy()
# Build column names to mask for affinity chanhes
if gene.lower() in geneL_basic:
#X_stabilityN = common_cols_stabiltyN
gene_affinity_colnames = []# not needed as its the common ones
cols_to_mask = ['ligand_affinity_change']
if gene.lower() in geneL_ppi2:
gene_affinity_colnames = ['mcsm_ppi2_affinity', 'interface_dist']
#X_stabilityN = common_cols_stabiltyN + geneL_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_ppi2_affinity']
if gene.lower() in geneL_na:
gene_affinity_colnames = ['mcsm_na_affinity']
#X_stabilityN = common_cols_stabiltyN + geneL_na_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity']
if gene.lower() in geneL_na_ppi2:
gene_affinity_colnames = ['mcsm_na_affinity'] + ['mcsm_ppi2_affinity', 'interface_dist']
#X_stabilityN = common_cols_stabiltyN + geneL_na_ppi2_st_cols
cols_to_mask = ['ligand_affinity_change', 'mcsm_na_affinity', 'mcsm_ppi2_affinity']
#=======================
# Masking columns:
# (mCSM-lig, mCSM-NA, mCSM-ppi2) values for lig_dist >10
#=======================
my_df_ml['mutationinformation'][my_df_ml['ligand_distance']>10].value_counts()
my_df_ml.groupby('mutationinformation')['ligand_distance'].apply(lambda x: (x>10)).value_counts()
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask].value_counts()
# mask the mcsm affinity related columns where ligand distance > 10
my_df_ml.loc[(my_df_ml['ligand_distance'] > 10), cols_to_mask] = 0
(my_df_ml['ligand_affinity_change'] == 0).sum()
mask_check = my_df_ml[['mutationinformation', 'ligand_distance'] + cols_to_mask]
#===================================================
# write file for check
#mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
#mask_check.to_csv(outdir + 'ml/' + gene.lower() + '_mask_check.csv')
#===================================================
###############################################################################
#%% Feature groups (FG): Build X for Input ML
############################################################################
#===========================
# FG1: Evolutionary features
#===========================
X_evolFN = ['consurf_score'
, 'snap2_score'
, 'provean_score']
###############################################################################
#========================
# FG2: Stability features
#========================
#--------
# common
#--------
X_common_stability_Fnum = [
'duet_stability_change'
, 'ddg_foldx'
, 'deepddg'
, 'ddg_dynamut2'
, 'contacts']
#--------
# FoldX
#--------
X_foldX_Fnum = [ 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss'
, 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss'
, 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss'
, 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss'
, 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss'
, 'volumetric_rr', 'volumetric_mm', 'volumetric_ss']
X_stability_FN = X_common_stability_Fnum + X_foldX_Fnum
###############################################################################
#===================
# FG3: Affinity features
#===================
common_affinity_Fnum = ['ligand_distance'
, 'ligand_affinity_change'
, 'mmcsm_lig']
# if gene.lower() in geneL_basic:
# X_affinityFN = common_affinity_Fnum
# else:
# X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
X_affinityFN = common_affinity_Fnum + gene_affinity_colnames
###############################################################################
#============================
# FG4: Residue level features
#============================
#-----------
# AA index
#-----------
X_aaindex_Fnum = list(aa_df_cols)
print('\nTotal no. of features for aaindex:', len(X_aaindex_Fnum))
#-----------------
# surface area
# depth
# hydrophobicity
#-----------------
X_str_Fnum = ['rsa'
#, 'asa'
, 'kd_values'
, 'rd_values']
#---------------------------
# Other aa properties
# active site indication
#---------------------------
X_aap_Fcat = ['ss_class'
# , 'wt_prop_water'
# , 'mut_prop_water'
# , 'wt_prop_polarity'
# , 'mut_prop_polarity'
# , 'wt_calcprop'
# , 'mut_calcprop'
, 'aa_prop_change'
, 'electrostatics_change'
, 'polarity_change'
, 'water_change'
, 'active_site']
X_resprop_FN = X_aaindex_Fnum + X_str_Fnum + X_aap_Fcat
###############################################################################
#========================
# FG5: Genomic features
#========================
# See the beginnning section
if use_or:
print('\nALL Genomic features being used (n):', len(X_genomicFN)
, '\nThese are:', X_genomicFN)
else:
print('\nGenomic features being used EXCLUDING odds ratio (n):', len(X_genomicFN)
, '\nThese are:', X_genomicFN)
###############################################################################
#========================
# FG6 collapsed: Structural : Atability + Affinity + ResidueProp
#========================
X_structural_FN = X_stability_FN + X_affinityFN + X_resprop_FN
###############################################################################
#========================
# BUILDING all features
#========================
all_featuresN = X_evolFN + X_structural_FN + X_genomicFN
###############################################################################
#%% Define training and test data
#================================================================
# Training and BLIND test set: 70/30
# dst with actual values : training set
# dst with imputed values : THROW AWAY [unrepresentative]
#================================================================
my_df_ml[drug].isna().sum()
# blind_test_df = my_df_ml[my_df_ml[drug].isna()]
# blind_test_df.shape
# training_df = my_df_ml[my_df_ml[drug].notna()]
# training_df.shape
# training_df = my_df_ml.copy()
# # Target 1: dst_mode
# training_df[drug].value_counts()
# training_df['dst_mode'].value_counts()
#all_training_df = my_df_ml[all_featuresN]
# Getting the dst column as this will be required for tts_split()
if 'dst' in my_df_ml:
print('\ndst column exists')
if my_df_ml['dst'].equals(my_df_ml[drug]):
print('\nand this is identical to drug column:', drug)
all_featuresN2 = all_featuresN + ['dst', 'dst_mode']
all_training_df = my_df_ml[all_featuresN2]
print('\nAll feature names:', all_featuresN2)
####################################################################
#==========================================================================
if write_maskfile:
print('\nPASS: and now writing file to check masked columns and values:', outFile_mask_ml )
mask_check.sort_values(by = ['ligand_distance'], ascending = True, inplace = True)
mask_check.to_csv(outFile_mask_ml, index = False)
else:
print('\nPASS: but NOT writing mask file')
#==========================================================================
if write_outfile:
print('\nPASS: and now writing processed file for ml:', outFile_ml)
#all_training_df.to_csv(outFile_ml, index = False)
else:
print('\nPASS: But NOT writing processed file')
#==========================================================================
print('\n#################################################################'
, '\nSUCCESS: Extacted training data for gene:', gene.lower()
, '\nDim of training_df:', all_training_df.shape)
if use_or:
print('\nThis includes Odds Ratio'
, '\n###########################################################')
else:
print('\nThis EXCLUDES Odds Ratio'
, '\n############################################################')
return(all_training_df)