LSHTM_analysis/scripts/plotting/plotting_data.R

131 lines
3.6 KiB
R
Executable file

#!/usr/bin/env Rscript
#########################################################
# TASK: formatting data that will be used for various plots
# useful links
#https://stackoverflow.com/questions/38851592/r-append-column-in-a-dataframe-with-frequency-count-based-on-two-columns
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
#source("Header_TT.R")
library(ggplot2)
library(data.table)
library(dplyr)
source("dirs.R")
require("getopt", quietly = TRUE) #cmd parse arguments
#========================================================
# command line args
#spec = matrix(c(
# "drug" , "d", 1, "character",
# "gene" , "g", 1, "character"
#), byrow = TRUE, ncol = 4)
#opt = getopt(spec)
#drug = opt$druggene = opt$gene
#if(is.null(drug)|is.null(gene)) {
# stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
#}
#========================================================
#======
# input
#======
#in_filename = "mcsm_complex1_normalised.csv"
in_filename_params = paste0(tolower(gene), "_all_params.csv")
infile_params = paste0(outdir, "/", in_filename_params)
cat(paste0("Input file 1:", infile_params) )
cat('columns based on variables:\n'
, drug
, '\n'
, dr_muts_col
, '\n'
, other_muts_col
, "\n"
, resistance_col
, '\n===============================================================')
#%%===============================================================
###########################
# Read file: struct params
###########################
cat("Reading struct params including mcsm:", in_filename_params)
my_df = read.csv(infile_params, header = T)
cat("\nInput dimensions:", dim(my_df))
###########################
# extract unique mutation entries
###########################
# check for duplicate mutations
if ( length(unique(my_df$mutationinformation)) != length(my_df$mutationinformation)){
cat(paste0("\nCAUTION:", " Duplicate mutations identified"
, "\nExtracting these..."))
dup_muts = my_df[duplicated(my_df$mutationinformation),]
dup_muts_nu = length(unique(dup_muts$mutationinformation))
cat(paste0("\nDim of duplicate mutation df:", nrow(dup_muts)
, "\nNo. of unique duplicate mutations:", dup_muts_nu
, "\n\nExtracting df with unique mutations only"))
my_df_u = my_df[!duplicated(my_df$mutationinformation),]
}else{
cat(paste0("\nNo duplicate mutations detected"))
my_df_u = my_df
}
upos = unique(my_df_u$position)
cat("\nDim of clean df:"); cat(dim(my_df_u))
cat("\nNo. of unique mutational positions:"); cat(length(upos), "\n")
###########################
# extract mutations <10Angstroms and symbols
###########################
table(my_df_u$ligand_distance<10)
my_df_u_lig = my_df_u[my_df_u$ligand_distance <10,]
#==================
# Angstroms symbol
#==================
angstroms_symbol = "\u212b"
cat(paste0("There are ", nrow(my_df_u_lig), " sites lying within 10", angstroms_symbol, " of the ligand\n"))
#==================
# Delta symbol
#==================
delta_symbol = "\u0394"; delta_symbol
###########################
# variables for my cols
###########################
mcsm_red2 = "#ae301e" # most negative
mcsm_red1 = "#f8766d"
mcsm_mid = "white" # middle
mcsm_blue1 = "#00bfc4"
mcsm_blue2 = "#007d85" # most positive
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
# clear variables
rm(opt, spec)