417 lines
14 KiB
R
417 lines
14 KiB
R
###########################################
|
|
LogoPlotMSA <- function(msaSeq_mut # chr vector
|
|
, msaSeq_wt # chr vector
|
|
#, msa_method = c("custom") # can be "bits", "probability" or "custom"
|
|
, logo_type = c("EDLogo") #"bits_pfm", "probability_pfm", "bits_raw", "probability_raw") # can be "bits", "probability" or "custom"
|
|
, EDScore_type = c("log") # see if this relevant, or source function should have it!
|
|
, bg_prob = NULL
|
|
, my_logo_col = "chemistry"
|
|
, plot_positions
|
|
, y_breaks
|
|
, x_lab_mut = "nsSNP-position"
|
|
, y_lab_mut
|
|
, x_ats = 13 # text size
|
|
, x_tangle = 90 # text angle
|
|
, x_axis_offset = 0.05 # dist b/w y-axis and plot start
|
|
, x_axis_offset_filtered = 0.2
|
|
, y_axis_offset = 0.05
|
|
, y_ats = 13
|
|
, y_tangle = 0
|
|
, x_tts = 13 # title size
|
|
, y_tts = 13
|
|
, leg_pos = "top" # can be top, left, right and bottom or c(0.8, 0.9)
|
|
, leg_dir = "horizontal" #can be vertical or horizontal
|
|
, leg_ts = 16 # leg text size
|
|
, leg_tts = 16 # leg title size
|
|
)
|
|
|
|
{
|
|
|
|
# Get PFM matrix for mut and wt MSA provided
|
|
data_ed = DataED_PFM(msaSeq_mut
|
|
, msaSeq_wt
|
|
, ED_score = EDScore_type)
|
|
names(data_ed)
|
|
#"pfm_mutM" "pfm_mut_scaledM" "combED_mutM" "pfm_wtM" "pfm_wt_scaledM" "combED_wtM"
|
|
|
|
if (logo_type == "EDLogo"){
|
|
msa_method = "custom"
|
|
y_label = "Enrichment Score"
|
|
data_logo_mut = data_ed[['combED_mutM']]
|
|
data_logo_wt = data_ed[['combED_wtM']]
|
|
|
|
msa_pos = as.numeric(colnames(data_logo_mut))
|
|
wt_pos = as.numeric(colnames(data_logo_wt))
|
|
|
|
# Construct Y-axis for MSA mut plot:
|
|
cat("\nCalculating y-axis for MSA mut plot")
|
|
|
|
if ( missing(y_breaks) ){
|
|
# Y-axis: Calculating
|
|
cat("\n----------------------------------------"
|
|
, "\nY-axis being generated from data"
|
|
, "\n-----------------------------------------")
|
|
ylim_low <- floor(min(data_logo_mut)); ylim_low
|
|
if( ylim_low == 0){
|
|
ylim_low = ylim_low
|
|
cat("\nY-axis lower limit:", ylim_low)
|
|
y_rlow = seq(0, ylim_low, length.out = 3); y_rlow
|
|
|
|
ylim_up <- ceiling(max(data_logo_mut)) + 5; ylim_up
|
|
cat("\nY-axis upper limit:", ylim_up)
|
|
y_rup = seq(0, ylim_up, by = 2); y_rup
|
|
}else{
|
|
ylim_low = ylim_low + (-0.5)
|
|
cat("\nY-axis lower limit is <0:", ylim_low)
|
|
y_rlow = seq(0, ylim_low, length.out = 3); y_rlow
|
|
|
|
ylim_up <- ceiling(max(data_logo_mut)) + 3; ylim_up
|
|
cat("\nY-axis upper limit:", ylim_up)
|
|
y_rup = seq(0, ylim_up, by = 3); y_rup
|
|
}
|
|
#ylim_scale <- unique(sort(c(y_rlow, y_rup, ylim_up))); ylim_scale
|
|
ylim_scale <- unique(sort(c(y_rlow, y_rup))); ylim_scale
|
|
cat("\nY-axis generated: see below\n"
|
|
, ylim_scale)
|
|
}else{
|
|
# Y-axis: User provided
|
|
cat("\n--------------------------------"
|
|
, "\nUsing y-axis:: User provided"
|
|
,"\n---------------------------------")
|
|
ylim_scale = sort(y_breaks)
|
|
ylim_low = min(ylim_scale); ylim_low
|
|
ylim_up = max(ylim_scale); ylim_up
|
|
}
|
|
|
|
}
|
|
|
|
if (logo_type == "bits_pfm"){
|
|
msa_method = "bits"
|
|
y_label = "Bits (PFM)"
|
|
data_logo_mut = data_ed[['pfm_mut_scaledM']]
|
|
data_logo_wt = data_ed[['pfm_wtM']]
|
|
|
|
msa_pos = as.numeric(colnames(data_logo_mut))
|
|
wt_pos = as.numeric(colnames(data_logo_wt))
|
|
}
|
|
|
|
if (logo_type == "probability_pfm"){
|
|
msa_method = "probability"
|
|
y_label = "Probability (PFM)"
|
|
data_logo_mut = data_ed[['pfm_mut_scaledM']]
|
|
data_logo_wt = data_ed[['pfm_wtM']]
|
|
|
|
msa_pos = as.numeric(colnames(data_logo_mut))
|
|
wt_pos = as.numeric(colnames(data_logo_wt))
|
|
}
|
|
|
|
if (logo_type == "bits_raw"){
|
|
msa_method = "bits"
|
|
y_label = "Bits"
|
|
|
|
data_logo_mut = msaSeq_mut
|
|
msa_interim = sapply(data_logo_mut, function(x) unlist(strsplit(x,"")))
|
|
msa_interimDF = data.frame(msa_interim)
|
|
msa_pos = as.numeric(rownames(msa_interimDF))
|
|
|
|
data_logo_wt = msaSeq_wt
|
|
wt_interim = sapply(data_logo_wt, function(x) unlist(strsplit(x,"")))
|
|
wt_interimDF = data.frame(wt_interim)
|
|
wt_pos = as.numeric(rownames(wt_interimDF))
|
|
|
|
}
|
|
|
|
if (logo_type == "probability_raw"){
|
|
msa_method = "probability"
|
|
y_label = "Probability"
|
|
|
|
data_logo_mut = msaSeq_mut
|
|
msa_interim = sapply(data_logo_mut, function(x) unlist(strsplit(x,"")))
|
|
msa_interimDF = data.frame(msa_interim)
|
|
msa_pos = as.numeric(rownames(msa_interimDF))
|
|
|
|
data_logo_wt = msaSeq_wt
|
|
wt_interim = sapply(data_logo_wt, function(x) unlist(strsplit(x,"")))
|
|
wt_interimDF = data.frame(wt_interim)
|
|
wt_pos = as.numeric(rownames(wt_interimDF))
|
|
}
|
|
|
|
#################################################################################
|
|
# param: plot_position
|
|
#################################################################################
|
|
|
|
if(missing(plot_positions)){
|
|
|
|
#================================
|
|
# NO filtering of positions
|
|
#================================
|
|
#---------
|
|
# MSA mut
|
|
#---------
|
|
cat("\n==========================================="
|
|
, "\nGenerated PFM mut: No filtering"
|
|
, "\n===========================================")
|
|
|
|
plot_mut_edM = data_logo_mut
|
|
|
|
#---------
|
|
# MSA WT
|
|
#---------
|
|
cat("\n==========================================="
|
|
, "\nGenerated PFM WT: No filtering"
|
|
, "\n===========================================")
|
|
|
|
plot_wt_edM = data_logo_wt
|
|
|
|
}else{
|
|
|
|
#================================
|
|
# Filtering of positions
|
|
#================================
|
|
cat("\n==========================================="
|
|
, "\nGenerating PFM MSA: filtered positions"
|
|
, "\n==========================================="
|
|
, "\nUser specified plotting positions for MSA:"
|
|
, "\nThese are:\n", plot_positions
|
|
, "\nSorting plot positions...")
|
|
|
|
plot_positions = sort(plot_positions)
|
|
|
|
cat("\nPlotting positions sorted:\n"
|
|
, plot_positions)
|
|
|
|
if ( all(plot_positions%in%msa_pos) && all(plot_positions%in%wt_pos) ){
|
|
cat("\nAll positions within range"
|
|
, "\nFiltering positions as specified..."
|
|
, "\nNo. of positions in plot:", length(plot_positions))
|
|
i_extract = plot_positions
|
|
|
|
#-----------------
|
|
# PFM: mut + wt
|
|
#------------------
|
|
if (logo_type%in%c("EDLogo", "bits_pfm", "probability_pfm")){
|
|
|
|
plot_mut_edM = data_logo_mut[, i_extract]
|
|
plot_wt_edM = data_logo_wt[, i_extract]
|
|
|
|
}
|
|
if (logo_type%in%c("bits_raw", "probability_raw")){
|
|
|
|
#--------
|
|
# Mut
|
|
#--------
|
|
dfP1 = msa_interimDF[i_extract,]
|
|
dfP1 = data.frame(t(dfP1))
|
|
names(dfP1) = i_extract
|
|
cols_to_paste = names(dfP1)
|
|
dfP1['chosen_seq'] = apply(dfP1[, cols_to_paste]
|
|
, 1
|
|
, paste, sep = ''
|
|
, collapse = "")
|
|
plot_mut_edM = dfP1$chosen_seq
|
|
|
|
#--------
|
|
# WT
|
|
#--------
|
|
dfP2 = wt_interimDF[i_extract,]
|
|
dfP2 = data.frame(t(dfP2))
|
|
names(dfP2) = i_extract
|
|
cols_to_paste2 = names(dfP2)
|
|
dfP2['chosen_seq'] = apply( dfP2[, cols_to_paste2]
|
|
, 1
|
|
, paste, sep = ''
|
|
, collapse = "")
|
|
|
|
plot_wt_edM = dfP2$chosen_seq
|
|
|
|
}
|
|
|
|
}else{
|
|
cat("\nNo. of positions selected:", length(plot_positions))
|
|
i_ofr = plot_positions[!plot_positions%in%msa_pos]
|
|
cat("\n1 or more plot_positions out of range..."
|
|
, "\nThese are:\n", i_ofr
|
|
, "\nQuitting! Resubmit with correct plot_positions")
|
|
quit()
|
|
}
|
|
}
|
|
|
|
|
|
######################################
|
|
# Generating plots for muts and wt
|
|
#####################################
|
|
if (my_logo_col %in% c('clustalx','taylor')) {
|
|
cat("\nSelected colour scheme:", my_logo_col
|
|
, "\nUsing black theme\n")
|
|
|
|
theme_bgc = "black"
|
|
xfont_bgc = "white"
|
|
yfont_bgc = "white"
|
|
xtt_col = "white"
|
|
ytt_col = "white"
|
|
|
|
}
|
|
|
|
if (my_logo_col %in% c('chemistry', 'hydrophobicity')) {
|
|
cat("\nstart of MSA"
|
|
, '\nSelected colour scheme:', my_logo_col
|
|
, "\nUsing grey theme")
|
|
|
|
theme_bgc = "grey"
|
|
xfont_bgc = "black"
|
|
yfont_bgc = "black"
|
|
xtt_col = "black"
|
|
ytt_col = "black"
|
|
|
|
}
|
|
|
|
#####################################
|
|
# Generating logo plots for nsSNPs
|
|
#####################################
|
|
PlotlogolasL <- list()
|
|
|
|
#-------------------
|
|
# Mutant logo plot
|
|
#-------------------
|
|
p0 = ggseqlogo(plot_mut_edM
|
|
, method = msa_method
|
|
, col_scheme = my_logo_col
|
|
, seq_type = 'auto') +
|
|
|
|
theme(legend.position = leg_pos
|
|
, legend.direction = leg_dir
|
|
#, legend.title = element_blank()
|
|
, legend.title = element_text(size = leg_tts
|
|
, colour = ytt_col)
|
|
, legend.text = element_text(size = leg_ts)
|
|
|
|
, axis.text.x = element_text(size = x_ats
|
|
, angle = x_tangle
|
|
, hjust = 1
|
|
, vjust = 0.4
|
|
, colour = xfont_bgc)
|
|
#, axis.text.y = element_blank()
|
|
, axis.text.y = element_text(size = y_ats
|
|
, angle = y_tangle
|
|
, hjust = 1
|
|
, vjust = -1.0
|
|
, colour = yfont_bgc)
|
|
, axis.title.x = element_text(size = x_tts
|
|
, colour = xtt_col)
|
|
, axis.title.y = element_text(size = y_tts
|
|
, colour = ytt_col)
|
|
, plot.background = element_rect(fill = theme_bgc)) +
|
|
|
|
xlab(x_lab_mut)
|
|
|
|
if (missing(plot_positions)){
|
|
ed_mut_logo_P = p0 +
|
|
scale_x_discrete(breaks = msa_pos
|
|
, expand = c(x_axis_offset, 0)
|
|
, labels = msa_pos
|
|
, limits = factor(msa_pos))
|
|
|
|
}else{
|
|
ed_mut_logo_P = p0 +
|
|
scale_x_discrete(breaks = i_extract
|
|
, expand = c(x_axis_offset_filtered, 0)
|
|
, labels = i_extract
|
|
, limits = factor(i_extract))
|
|
|
|
}
|
|
|
|
if (logo_type == "EDLogo"){
|
|
ed_mut_logo_P = ed_mut_logo_P +
|
|
scale_y_continuous(limits = c(ylim_low, ylim_up)
|
|
, breaks = ylim_scale
|
|
, expand = c(0, y_axis_offset)) +
|
|
geom_hline(yintercept = 0
|
|
, linetype = "solid"
|
|
, color = "grey"
|
|
, size = 1)
|
|
}
|
|
|
|
if (missing(y_lab_mut)){
|
|
ed_mut_logo_P = ed_mut_logo_P + ylab(y_label)
|
|
} else{
|
|
ed_mut_logo_P = ed_mut_logo_P + ylab(y_lab_mut)
|
|
}
|
|
|
|
cat('\nDone: MSA plot for mutations')
|
|
#return(msa_mut_logoP)
|
|
PlotlogolasL[['ed_mut_logoP']] <- ed_mut_logo_P
|
|
|
|
#---------------------------------
|
|
# Wild-type MSA: gene_fasta file
|
|
#---------------------------------
|
|
p1 = ggseqlogo(plot_wt_edM
|
|
#, facet = "grid"
|
|
, method = msa_method
|
|
, col_scheme = my_logo_col
|
|
, seq_type = 'aa') +
|
|
|
|
theme(legend.position = "none"
|
|
, legend.direction = leg_dir
|
|
#, legend.title = element_blank()
|
|
, legend.title = element_text(size = leg_tts
|
|
, colour = ytt_col)
|
|
, legend.text = element_text(size = leg_ts)
|
|
|
|
, axis.text.x = element_text(size = x_ats
|
|
, angle = x_tangle
|
|
, hjust = 1
|
|
, vjust = 0.4
|
|
, colour = xfont_bgc)
|
|
, axis.text.y = element_blank()
|
|
|
|
, axis.title.x = element_text(size = x_tts
|
|
, colour = xtt_col)
|
|
, axis.title.y = element_text(size = y_tts
|
|
, colour = ytt_col)
|
|
|
|
, plot.background = element_rect(fill = theme_bgc)) +
|
|
|
|
ylab("") + xlab("Wild-type position")
|
|
|
|
if (missing(plot_positions)){
|
|
|
|
# No y-axis needed
|
|
ed_wt_logo_P = p1 +
|
|
scale_x_discrete(breaks = wt_pos
|
|
, expand = c(x_axis_offset, 0)
|
|
, labels = wt_pos
|
|
, limits = factor(wt_pos))
|
|
}else{
|
|
|
|
ed_wt_logo_P = p1 +
|
|
scale_x_discrete(breaks = i_extract
|
|
, expand = c(x_axis_offset_filtered, 0)
|
|
, labels = i_extract
|
|
, limits = factor(i_extract))
|
|
}
|
|
|
|
cat('\nDone: MSA plot for WT')
|
|
#return(msa_wt_logoP)
|
|
PlotlogolasL[['ed_wt_logoP']] <- ed_wt_logo_P
|
|
|
|
#=========================================
|
|
# Output
|
|
# Combined plot: logo ED/other logo plot
|
|
# customised for ggseqlogo
|
|
#=========================================
|
|
|
|
cat('\nDone: ed_mut_logoP + ed_wt_logoP')
|
|
|
|
# colour scheme: https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
|
|
#cat("\nOutput plot:", LogoSNPs_comb, "\n")
|
|
#svg(LogoSNPs_combined, width = 32, height = 10)
|
|
|
|
LogoED_comb = cowplot::plot_grid(PlotlogolasL[['ed_mut_logoP']]
|
|
, PlotlogolasL[['ed_wt_logoP']]
|
|
, nrow = 2
|
|
, align = "v"
|
|
, rel_heights = c(3/4, 1/4))
|
|
|
|
return(LogoED_comb)
|
|
|
|
}
|