LSHTM_analysis/scripts/plotting/logo_plot.R

255 lines
8.7 KiB
R
Executable file

#!/usr/bin/env Rscript
#########################################################
# TASK: producing logoplot
# from data and/or from sequence
#########################################################
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
source("Header_TT.R")
source("../functions/plotting_globals.R")
source("../functions/plotting_data.R")
source("../functions/combining_dfs_plotting.R")
###########################################################
# command line args
#********************
#drug = 'streptomycin'
#gene = 'gid'
#********************
# !!!FUTURE TODO!!!
# Can pass additional params of output/plot dir by user.
# Not strictly required for my workflow since it is optimised
# to have a streamlined input/output flow without filename worries.
#********************
spec = matrix(c(
"drug" , "d", 1, "character",
"gene" , "g", 1, "character",
"data_file1" , "fa", 2, "character",
"data_file2" , "fb", 2, "character"
), byrow = TRUE, ncol = 4)
opt = getopt(spec)
#FIXME: detect if script running from cmd, then set these
drug = opt$drug
gene = opt$gene
infile_params = opt$data_file1
infile_metadata = opt$data_file2
# hardcoding when not using cmd
#drug = "streptomycin"
#gene = "gid"
if(is.null(drug)|is.null(gene)) {
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
}
#===========
# input
#===========
#---------------------
# call: import_dirs()
#---------------------
import_dirs(drug, gene)
#---------------------------
# call: plotting_data()
#---------------------------
#if (!exists("infile_params") && exists("gene")){
if (!is.character(infile_params) && exists("gene")){
#in_filename_params = paste0(tolower(gene), "_all_params.csv")
in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid
infile_params = paste0(outdir, "/", in_filename_params)
cat("\nInput file for mcsm comb data not specified, assuming filename: ", infile_params, "\n")
}
# Input 1: read <gene>_comb_afor.csv
my_df = read.csv(infile_params, header = T)
pd_df = plotting_data(my_df)
my_df_u = pd_df[[1]] # this forms one of the input for combining_dfs_plotting()
#--------------------------------
# call: combining_dfs_plotting()
#--------------------------------
#if (!exists("infile_metadata") && exists("gene")){
if (!is.character(infile_params) && exists("gene")){
in_filename_metadata = paste0(tolower(gene), "_metadata.csv") # part combined for gid
infile_metadata = paste0(outdir, "/", in_filename_metadata)
cat("\nInput file for gene metadata not specified, assuming filename: ", infile_metadata, "\n")
}
# Input 2: read <gene>_meta data.csv
cat("\nReading meta data file:", infile_metadata)
gene_metadata <- read.csv(infile_metadata
, stringsAsFactors = F
, header = T)
all_plot_dfs = combining_dfs_plotting(my_df_u
, gene_metadata
, lig_dist_colname = 'ligand_distance'
, lig_dist_cutoff = 10)
#merged_df2 = all_plot_dfs[[1]]
merged_df3 = all_plot_dfs[[2]]
#merged_df2_comp = all_plot_dfs[[3]]
#merged_df3_comp = all_plot_dfs[[4]]
#merged_df2_lig = all_plot_dfs[[5]]
#merged_df3_lig = all_plot_dfs[[6]]
#===========
# output
#===========
logo_plot = "logo_plot.svg"
plot_logo_plot = paste0(plotdir,"/", logo_plot)
###########################
# Data for plots
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
# This will the first plotting df
# Then subset this to extract dr muts only (second plottig df)
###########################
#%%%%%%%%%%%%%%%%%%%%%%%%%
# uncomment as necessary
# REASSIGNMENT
#my_data = merged_df2
#my_data = merged_df2_comp
my_data = merged_df3
#my_data = merged_df3_comp
#%%%%%%%%%%%%%%%%%%%%%%%%%%
# quick checks
colnames(my_data)
str(my_data)
c1 = unique(my_data$position)
nrow(my_data)
cat("No. of rows in my_data:", nrow(my_data)
, "\nDistinct positions corresponding to snps:", length(c1)
, "\n===========================================================")
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
# FIXME: Think and decide what you want to remove
# mut_pos_occurence < 1 or sample_pos_occurrence <1
# get freq count of positions so you can subset freq<1
#require(data.table)
#setDT(my_data)[, mut_pos_occurrence := .N, by = .(position)] #265, 14
#extract freq_pos>1
#my_data_snp = my_data[my_data$occurrence!=1,]
#u = unique(my_data_snp$position) #73
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT to prevent changing code
my_data_snp = my_data
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#=======================================================================
#%% logo plots from dataframe
#############
# PLOTS: ggseqlogo with custom height
# https://omarwagih.github.io/ggseqlogo/
#############
foo = my_data_snp[, c("position"
, "mutant_type","duet_scaled", "or_mychisq"
, "mut_prop_polarity", "mut_prop_water")]
my_data_snp$log10or = log10(my_data_snp$or_mychisq)
logo_data = my_data_snp[, c("position"
, "mutant_type", "or_mychisq", "log10or")]
logo_data_or = my_data_snp[, c("position", "mutant_type", "or_mychisq")]
wide_df_or <- logo_data_or %>% spread(position, or_mychisq, fill = 0.0)
wide_df_or = as.matrix(wide_df_or)
rownames(wide_df_or) = wide_df_or[,1]
dim(wide_df_or)
wide_df_or = wide_df_or[,-1]
str(wide_df_or)
position_or = as.numeric(colnames(wide_df_or))
#===========================================
#custom height (OR) logo plot: CORRECT x-axis labelling
#============================================
# custom height (OR) logo plot: yayy works
cat("Logo plot with OR as y axis:", plot_logo_plot)
svg(plot_logo_plot, width = 30 , height = 6)
logo_or = ggseqlogo(wide_df_or, method="custom", seq_type="aa") + ylab("my custom height") +
theme( axis.text.x = element_text(size = 12
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 22
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.y = element_text(size = 25)
, axis.title.x = element_text(size = 20)
#, legend.position = "bottom") +
, legend.position = "none")+
#, legend.text = element_text(size = 15)
#, legend.title = element_text(size = 15))+
scale_x_discrete("Position"
#, breaks
, labels = position_or
, limits = factor(1:length(position_or))) +
ylab("Odds Ratio")
print(logo_or)
dev.off()
#%% end of logo plot with OR as height
#=======================================================================
# extracting data with log10R
logo_data_logor = my_data_snp[, c("position", "mutant_type", "log10or")]
wide_df_logor <- logo_data_logor %>% spread(position, log10or, fill = 0.0)
wide_df_logor = as.matrix(wide_df_logor)
rownames(wide_df_logor) = wide_df_logor[,1]
wide_df_logor = subset(wide_df_logor, select = -c(1) )
colnames(wide_df_logor)
wide_df_logor_m = data.matrix(wide_df_logor)
rownames(wide_df_logor_m)
colnames(wide_df_logor_m)
# FIXME
#my_ylim_up = as.numeric(max(wide_df_logor_m)) * 5
#my_ylim_low = as.numeric(min(wide_df_logor_m))
position_logor = as.numeric(colnames(wide_df_logor_m))
# custom height (log10OR) logo plot: yayy works
ggseqlogo(wide_df_logor_m, method="custom", seq_type="aa") + ylab("my custom height") +
theme(legend.position = "bottom"
, axis.text.x = element_text(size = 11
, angle = 90
, hjust = 1
, vjust = 0.4)
, axis.text.y = element_text(size = 15
, angle = 0
, hjust = 1
, vjust = 0))+
scale_x_discrete("Position"
#, breaks
, labels = position_logor
, limits = factor(1:length(position_logor)))+
ylab("Log (Odds Ratio)") +
scale_y_continuous(limits = c(0, 9))
#=======================================================================
#%% end of script
#=======================================================================