259 lines
7.8 KiB
R
Executable file
259 lines
7.8 KiB
R
Executable file
#!/usr/bin/env Rscript
|
|
#########################################################
|
|
# TASK: producing logo-type plot showing
|
|
# multiple muts per position coloured by aa property
|
|
#########################################################
|
|
#=======================================================================
|
|
# working dir and loading libraries
|
|
getwd()
|
|
setwd("~/git/LSHTM_analysis/scripts/plotting")
|
|
getwd()
|
|
|
|
source("Header_TT.R")
|
|
source("../functions/plotting_globals.R")
|
|
source("../functions/plotting_data.R")
|
|
source("../functions/combining_dfs_plotting.R")
|
|
###########################################################
|
|
# command line args
|
|
#********************
|
|
#drug = 'streptomycin'
|
|
#gene = 'gid'
|
|
#********************
|
|
# !!!FUTURE TODO!!!
|
|
# Can pass additional params of output/plot dir by user.
|
|
# Not strictly required for my workflow since it is optimised
|
|
# to have a streamlined input/output flow without filename worries.
|
|
#********************
|
|
spec = matrix(c(
|
|
"drug" , "d", 1, "character",
|
|
"gene" , "g", 1, "character",
|
|
"data_file1" , "fa", 2, "character",
|
|
"data_file2" , "fb", 2, "character"
|
|
), byrow = TRUE, ncol = 4)
|
|
|
|
opt = getopt(spec)
|
|
|
|
#FIXME: detect if script running from cmd, then set these
|
|
drug = opt$drug
|
|
gene = opt$gene
|
|
infile_params = opt$data_file1
|
|
infile_metadata = opt$data_file2
|
|
|
|
if(is.null(drug)|is.null(gene)) {
|
|
stop("Missing arguments: --drug and --gene must both be specified (case-sensitive)")
|
|
}
|
|
#===========
|
|
# input
|
|
#===========
|
|
#---------------------
|
|
# call: import_dirs()
|
|
#---------------------
|
|
import_dirs(drug_name = drug, gene_name = gene)
|
|
|
|
#---------------------------
|
|
# call: plotting_data()
|
|
#---------------------------
|
|
#if (!exists("infile_params") && exists("gene")){
|
|
if (!is.character(infile_params) && exists("gene")){ # when running as cmd
|
|
#in_filename_params = paste0(tolower(gene), "_all_params.csv")
|
|
in_filename_params = paste0(tolower(gene), "_comb_afor.csv") # part combined for gid
|
|
infile_params = paste0(outdir, "/", in_filename_params)
|
|
cat("\nInput file for mcsm comb data not specified, assuming filename: ", infile_params, "\n")
|
|
}
|
|
|
|
# Input 1: read <gene>_comb_afor.csv
|
|
cat("\nReading mcsm combined data file: ", infile_params)
|
|
mcsm_df = read.csv(infile_params, header = T)
|
|
pd_df = plotting_data(mcsm_df)
|
|
my_df_u = pd_df[[1]] # this forms one of the input for combining_dfs_plotting()
|
|
|
|
#--------------------------------
|
|
# call: combining_dfs_plotting()
|
|
#--------------------------------
|
|
#if (!exists("infile_metadata") && exists("gene")){
|
|
if (!is.character(infile_metadata) && exists("gene")){ # when running as cmd
|
|
in_filename_metadata = paste0(tolower(gene), "_metadata.csv") # part combined for gid
|
|
infile_metadata = paste0(outdir, "/", in_filename_metadata)
|
|
cat("\nInput file for gene metadata not specified, assuming filename: ", infile_metadata, "\n")
|
|
}
|
|
|
|
# Input 2: read <gene>_meta data.csv
|
|
cat("\nReading meta data file: ", infile_metadata)
|
|
|
|
gene_metadata <- read.csv(infile_metadata
|
|
, stringsAsFactors = F
|
|
, header = T)
|
|
|
|
all_plot_dfs = combining_dfs_plotting(my_df_u
|
|
, gene_metadata
|
|
, lig_dist_colname = 'ligand_distance'
|
|
, lig_dist_cutoff = 10)
|
|
|
|
merged_df3 = all_plot_dfs[[2]]
|
|
|
|
#===========
|
|
# output
|
|
#===========
|
|
|
|
logo_multiple_muts = "logo_multiple_muts.svg"
|
|
plot_logo_multiple_muts = paste0(plotdir,"/", logo_multiple_muts)
|
|
|
|
##########################################################################
|
|
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
# REASSIGNMENT
|
|
my_df = merged_df3
|
|
#%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
colnames(my_df)
|
|
str(my_df)
|
|
|
|
#rownames(my_df) = my_df$mutation
|
|
|
|
c1 = unique(my_df$position)
|
|
nrow(my_df)
|
|
|
|
# get freq count of positions so you can subset freq<1
|
|
require(data.table)
|
|
setDT(my_df)[, mut_pos_occurrence := .N, by = .(position)] #189, 36
|
|
|
|
table(my_df$position)
|
|
table(my_df$mut_pos_occurrence)
|
|
|
|
max_mut = max(table(my_df$position))
|
|
|
|
# extract freq_pos>1
|
|
my_data_snp = my_df[my_df$mut_pos_occurrence!=1,]
|
|
u = unique(my_data_snp$position)
|
|
max_mult_mut = max(table(my_data_snp$position))
|
|
|
|
if (nrow(my_data_snp) == nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]] ){
|
|
|
|
cat("PASS: positions with multiple muts extracted"
|
|
, "\nNo. of mutations:", nrow(my_data_snp)
|
|
, "\nNo. of positions:", length(u)
|
|
, "\nMax no. of muts at any position", max_mult_mut)
|
|
}else{
|
|
cat("FAIL: positions with multiple muts could NOT be extracted"
|
|
, "\nExpected:",nrow(my_df) - table(my_df$mut_pos_occurrence)[[1]]
|
|
, "\nGot:", nrow(my_data_snp) )
|
|
}
|
|
|
|
cat("\nNo. of sites with only 1 mutations:", table(my_df$mut_pos_occurrence)[[1]])
|
|
|
|
|
|
########################################################################
|
|
# end of data extraction and cleaning for_mychisq plots #
|
|
########################################################################
|
|
|
|
#==============
|
|
# matrix for_mychisq mutant type
|
|
# frequency of mutant type by position
|
|
#==============
|
|
table(my_data_snp$mutant_type, my_data_snp$position)
|
|
tab_mt = table(my_data_snp$mutant_type, my_data_snp$position)
|
|
class(tab_mt)
|
|
|
|
# unclass to convert to matrix
|
|
tab_mt = unclass(tab_mt)
|
|
tab_mt = as.matrix(tab_mt, rownames = T)
|
|
|
|
#should be TRUE
|
|
is.matrix(tab_mt)
|
|
|
|
rownames(tab_mt) #aa
|
|
colnames(tab_mt) #pos
|
|
|
|
#**************
|
|
# Plot 1: mutant logo
|
|
#**************
|
|
p0 = ggseqlogo(tab_mt
|
|
, method = 'custom'
|
|
, seq_type = 'aa') +
|
|
#ylab('my custom height') +
|
|
theme(axis.text.x = element_blank()) +
|
|
theme_logo()+
|
|
scale_x_continuous(breaks = 1:ncol(tab_mt)
|
|
, labels = colnames(tab_mt))+
|
|
scale_y_continuous( breaks = 1:max_mult_mut
|
|
, limits = c(0, max_mult_mut))
|
|
|
|
p0
|
|
|
|
# further customisation
|
|
p1 = p0 + theme(legend.position = "none"
|
|
, legend.title = element_blank()
|
|
, legend.text = element_text(size = 20)
|
|
, axis.text.x = element_text(size = 17, angle = 90)
|
|
, axis.text.y = element_blank())
|
|
p1
|
|
|
|
#==============
|
|
# matrix for wild type
|
|
# frequency of wild type by position
|
|
#==============
|
|
tab_wt = table(my_data_snp$wild_type, my_data_snp$position); tab_wt
|
|
tab_wt = unclass(tab_wt)
|
|
|
|
#remove wt duplicates
|
|
wt = my_data_snp[, c("position", "wild_type")]
|
|
wt = wt[!duplicated(wt),]
|
|
|
|
tab_wt = table(wt$wild_type, wt$position); tab_wt # should all be 1
|
|
rownames(tab_wt)
|
|
rownames(tab_wt)
|
|
|
|
#**************
|
|
# Plot 2: wild_type logo
|
|
#**************
|
|
# sanity check: MUST BE TRUE
|
|
|
|
identical(colnames(tab_mt), colnames(tab_wt))
|
|
identical(ncol(tab_mt), ncol(tab_wt))
|
|
|
|
p2 = ggseqlogo(tab_wt
|
|
, method = 'custom'
|
|
, seq_type = 'aa'
|
|
#, col_scheme = "taylor"
|
|
#, col_scheme = chemistry2
|
|
) +
|
|
#ylab('my custom height') +
|
|
theme(axis.text.x = element_blank()
|
|
, axis.text.y = element_blank()) +
|
|
theme_logo() +
|
|
scale_x_continuous(breaks = 1:ncol(tab_wt)
|
|
, labels = colnames(tab_wt))
|
|
p2
|
|
|
|
# further customise
|
|
p3 = p2 +
|
|
theme(legend.position = "bottom"
|
|
#, legend.title = element_blank()
|
|
, legend.title = element_text("Amino acid properties", size = 20)
|
|
, legend.text = element_text(size = 20)
|
|
, axis.text.x = element_text(size = 17, angle = 90)
|
|
, axis.text.y = element_blank()
|
|
, axis.title.x = element_text(size = 22))+
|
|
|
|
labs(x= "Position")
|
|
|
|
p3
|
|
|
|
# Now combine using cowplot, which ensures the plots are aligned
|
|
suppressMessages( require(cowplot) )
|
|
|
|
plot_grid(p1, p3, ncol = 1, align = 'v') #+
|
|
|
|
#colour scheme
|
|
#https://rdrr.io/cran/ggseqlogo/src/R/col_schemes.r
|
|
|
|
cat("Output plot:", plot_logo_multiple_muts)
|
|
|
|
svg(plot_logo_multiple_muts, width = 32, height = 10)
|
|
|
|
OutPlot1 = cowplot::plot_grid(p1, p3
|
|
, nrow = 2
|
|
, align = "v"
|
|
, rel_heights = c(3/4, 1/4))
|
|
|
|
print(OutPlot1)
|
|
dev.off()
|