LSHTM_analysis/scripts/plotting/get_plotting_dfs.R

223 lines
8 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: Get formatted data for plots
#########################################################
# working dir and loading libraries
getwd()
source("~/git/LSHTM_analysis/scripts/Header_TT.R")
# cmd args passed
# in from other scripts
# to call this
# set drug and gene name
#==========================================
# variables for lig:
# comes from functions/plotting_globals.R
#==========================================
cat("\nGlobal variables for Ligand:"
, "\nligand distance colname:", LigDist_colname
, "\nligand distance cut off:", LigDist_cutoff)
#===========
# input
#===========
#--------------------------------------------
# call: import_dirs()
# comes from functions/plotting_globals.R
#--------------------------------------------
import_dirs(drug, gene)
#---------------------------
# call: plotting_data()
#---------------------------
if (!exists("infile_params") && exists("gene")){
#if (!is.character(infile_params) && exists("gene")){ # when running as cmd
in_filename_params = paste0(tolower(gene), "_all_params.csv")
infile_params = paste0(outdir, "/", in_filename_params)
cat("\nInput file for mcsm comb data not specified, assuming filename: ", infile_params, "\n")
}
# Input 1: read <gene>_comb_afor.csv
cat("\nReading mcsm combined data file: ", infile_params)
mcsm_df = read.csv(infile_params, header = T)
pd_df = plotting_data(mcsm_df
, lig_dist_colname = LigDist_colname
, lig_dist_cutoff = LigDist_cutoff)
my_df = pd_df[[1]]
my_df_u = pd_df[[2]] # this forms one of the input for combining_dfs_plotting()
max_ang <- round(max(my_df_u[LigDist_colname]))
min_ang <- round(min(my_df_u[LigDist_colname]))
cat("\nLigand distance colname:", LigDist_colname
, "\nThe max distance", gene, "structure df" , ":", max_ang, "\u212b"
, "\nThe min distance", gene, "structure df" , ":", min_ang, "\u212b")
#--------------------------------
# call: combining_dfs_plotting()
#--------------------------------
if (!exists("infile_metadata") && exists("gene")){
#if (!is.character(infile_metadata) && exists("gene")){ # when running as cmd
in_filename_metadata = paste0(tolower(gene), "_metadata.csv") # part combined for gid
infile_metadata = paste0(outdir, "/", in_filename_metadata)
cat("\nInput file for gene metadata not specified, assuming filename: ", infile_metadata, "\n")
}
# Input 2: read <gene>_meta data.csv
cat("\nReading meta data file: ", infile_metadata)
gene_metadata <- read.csv(infile_metadata
, stringsAsFactors = F
, header = T)
cat("\nDim of meta data file: ", dim(gene_metadata))
all_plot_dfs = combining_dfs_plotting(my_df_u
, gene_metadata
, lig_dist_colname = LigDist_colname
, lig_dist_cutoff = LigDist_cutoff)
merged_df2 = all_plot_dfs[[1]]
merged_df3 = all_plot_dfs[[2]]
#merged_df2_comp = all_plot_dfs[[3]]
#merged_df3_comp = all_plot_dfs[[4]]
#======================================================================
####################################################################
# Data for subcols barplot (~heatmap)
####################################################################
#source("coloured_bp_data.R")
# Repurposed function so that params can be passed instead to generate
# data required for plotting.
# Moved "coloured_bp_data.R" to redundant/
####################################################################
# Data for logoplots
####################################################################
source(paste0(plot_script_path, "logo_data_msa.R"))
s1 = c("\nSuccessfully sourced logo_data_msa.R")
cat(s1)
####################################################################
# Data for DM OM Plots: WF and LF dfs
# My function: dm_om_wf_lf_data()
# location: scripts/functions/dm_om_data.R
#source("other_plots_data.R")
####################################################################
#source(paste0(plot_script_path, "dm_om_data.R")) # calling the function directly instead
geneL_normal = c("pnca")
geneL_na = c("gid", "rpob")
geneL_ppi2 = c("alr", "embb", "katg", "rpob")
all_dm_om_df = dm_om_wf_lf_data(df = merged_df3, gene_name = gene)
wf_duet = all_dm_om_df[['wf_duet']]
lf_duet = all_dm_om_df[['lf_duet']]
wf_mcsm_lig = all_dm_om_df[['wf_mcsm_lig']]
lf_mcsm_lig = all_dm_om_df[['lf_mcsm_lig']]
wf_foldx = all_dm_om_df[['wf_foldx']]
lf_foldx = all_dm_om_df[['lf_foldx']]
wf_deepddg = all_dm_om_df[['wf_deepddg']]
lf_deepddg = all_dm_om_df[['lf_deepddg']]
wf_dynamut2 = all_dm_om_df[['wf_dynamut2']]
lf_dynamut2 = all_dm_om_df[['lf_dynamut2']]
wf_consurf = all_dm_om_df[['wf_consurf']]
lf_consurf = all_dm_om_df[['lf_consurf']]
wf_snap2 = all_dm_om_df[['wf_snap2']]
lf_snap2 = all_dm_om_df[['lf_snap2']]
if (tolower(gene)%in%geneL_na){
wf_mcsm_na = all_dm_om_df[['wf_mcsm_na']]
lf_mcsm_na = all_dm_om_df[['lf_mcsm_na']]
}
if (tolower(gene)%in%geneL_ppi2){
wf_mcsm_ppi2 = all_dm_om_df[['wf_mcsm_ppi2']]
lf_mcsm_ppi2 = all_dm_om_df[['lf_mcsm_ppi2']]
}
s2 = c("\nSuccessfully sourced other_plots_data.R")
cat(s2)
####################################################################
# Data for Lineage barplots: WF and LF dfs
# My function: lineage_plot_data()
# location: scripts/functions/lineage_plot_data.R
####################################################################
#source(paste0(plot_script_path, "lineage_data.R"))
# converted to a function. Moved lineage_data.R to redundant/
lineage_dfL = lineage_plot_data(merged_df2
, lineage_column_name = "lineage"
, remove_empty_lineage = F
, lineage_label_col_name = "lineage_labels"
, id_colname = "id"
, snp_colname = "mutationinformation"
)
lin_wf = lineage_dfL[['lin_wf']]
lin_lf = lineage_dfL[['lin_lf']]
s3 = c("\nSuccessfully sourced lineage_data.R")
cat(s3)
####################################################################
# Data for corr plots:
# My function: corr_data_extract()
# location: scripts/functions/corr_plot_data.R
####################################################################
# make sure the above script works because merged_df2_combined is needed
merged_df3 = as.data.frame(merged_df3)
corr_df_m3_f = corr_data_extract(merged_df3, extract_scaled_cols = F)
head(corr_df_m3_f)
corr_df_m2_f = corr_data_extract(merged_df2, extract_scaled_cols = F)
head(corr_df_m2_f)
s4 = c("\nSuccessfully sourced Corr_data.R")
cat(s4)
########################################################################
# End of script
########################################################################
if ( all( length(s1), length(s2), length(s3), length(s4) ) > 0 ){
cat(
"\n##################################################"
, "\nSuccessful: get_plotting_dfs.R worked!"
, "\n###################################################\n")
} else {
cat(
"\n#################################################"
, "\nFAIL: get_plotting_dfs.R didn't complete fully!Please check"
, "\n###################################################\n" )
}
########################################################################
# clear excess variables: from the global enviornment
vars0 = ls(envir = .GlobalEnv)[grepl("curr_*", ls(envir = .GlobalEnv))]
vars1 = ls(envir = .GlobalEnv)[grepl("^cols_to*", ls(envir = .GlobalEnv))]
vars2 = ls(envir = .GlobalEnv)[grepl("pivot_cols_*", ls(envir = .GlobalEnv))]
vars3 = ls(envir = .GlobalEnv)[grepl("expected_*", ls(envir = .GlobalEnv))]
rm( infile_metadata
, infile_params
, vars0
, vars1
, vars2
, vars3)