LSHTM_analysis/scripts/ml/genes_ml_logs/log_genes_ml.txt

27210 lines
1.2 MiB
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
1.22.4
1.4.1
1.22.4
1.4.1
Gene: pncA
Drug: pyrazinamide
aaindex_df contains non-numerical data
Total no. of non-numerial columns: 2
Selecting numerical data only
PASS: successfully selected numerical columns only for aaindex_df
Now checking for NA in the remaining aaindex_cols
Counting aaindex_df cols with NA
ncols with NA: 4 columns
Dropping these...
Original ncols: 127
Revised df ncols: 123
Checking NA in revised df...
PASS: cols with NA successfully dropped from aaindex_df
Proceeding with combining aa_df with other features_df
PASS: ncols match
Expected ncols: 123
Got: 123
Total no. of columns in clean aa_df: 123
Proceeding to merge, expected nrows in merged_df: 424
PASS: my_features_df and aa_df successfully combined
nrows: 424
ncols: 267
count of NULL values before imputation
or_mychisq 102
log10_or_mychisq 102
dtype: int64
count of NULL values AFTER imputation
mutationinformation 0
or_rawI 0
logorI 0
dtype: int64
PASS: OR values imputed, data ready for ML
Total no. of features for aaindex: 123
Genomic features being used EXCLUDING odds ratio (n): 5
These are: ['maf', 'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all', 'lineage_count_unique']
dst column exists
and this is identical to drug column: pyrazinamide
All feature names: ['consurf_score', 'snap2_score', 'provean_score', 'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2', 'contacts', 'electro_rr', 'electro_mm', 'electro_sm', 'electro_ss', 'disulfide_rr', 'disulfide_mm', 'disulfide_sm', 'disulfide_ss', 'hbonds_rr', 'hbonds_mm', 'hbonds_sm', 'hbonds_ss', 'partcov_rr', 'partcov_mm', 'partcov_sm', 'partcov_ss', 'vdwclashes_rr', 'vdwclashes_mm', 'vdwclashes_sm', 'vdwclashes_ss', 'volumetric_rr', 'volumetric_mm', 'volumetric_ss', 'ligand_distance', 'ligand_affinity_change', 'mmcsm_lig', 'ALTS910101', 'AZAE970101', 'AZAE970102', 'BASU010101', 'BENS940101', 'BENS940102', 'BENS940103', 'BENS940104', 'BETM990101', 'BLAJ010101', 'BONM030101', 'BONM030102', 'BONM030103', 'BONM030104', 'BONM030105', 'BONM030106', 'BRYS930101', 'CROG050101', 'CSEM940101', 'DAYM780301', 'DAYM780302', 'DOSZ010101', 'DOSZ010102', 'DOSZ010103', 'DOSZ010104', 'FEND850101', 'FITW660101', 'GEOD900101', 'GIAG010101', 'GONG920101', 'GRAR740104', 'HENS920101', 'HENS920102', 'HENS920103', 'HENS920104', 'JOHM930101', 'JOND920103', 'JOND940101', 'KANM000101', 'KAPO950101', 'KESO980101', 'KESO980102', 'KOLA920101', 'KOLA930101', 'KOSJ950100_RSA_SST', 'KOSJ950100_SST', 'KOSJ950110_RSA', 'KOSJ950115', 'LEVJ860101', 'LINK010101', 'LIWA970101', 'LUTR910101', 'LUTR910102', 'LUTR910103', 'LUTR910104', 'LUTR910105', 'LUTR910106', 'LUTR910107', 'LUTR910108', 'LUTR910109', 'MCLA710101', 'MCLA720101', 'MEHP950102', 'MICC010101', 'MIRL960101', 'MIYS850102', 'MIYS850103', 'MIYS930101', 'MIYS960101', 'MIYS960102', 'MIYS960103', 'MIYS990106', 'MIYS990107', 'MIYT790101', 'MOHR870101', 'MOOG990101', 'MUET010101', 'MUET020101', 'MUET020102', 'NAOD960101', 'NGPC000101', 'NIEK910101', 'NIEK910102', 'OGAK980101', 'OVEJ920100_RSA', 'OVEJ920101', 'OVEJ920102', 'OVEJ920103', 'PRLA000101', 'PRLA000102', 'QUIB020101', 'QU_C930101', 'QU_C930102', 'QU_C930103', 'RIER950101', 'RISJ880101', 'RUSR970101', 'RUSR970102', 'RUSR970103', 'SIMK990101', 'SIMK990102', 'SIMK990103', 'SIMK990104', 'SIMK990105', 'SKOJ000101', 'SKOJ000102', 'SKOJ970101', 'TANS760101', 'TANS760102', 'THOP960101', 'TOBD000101', 'TOBD000102', 'TUDE900101', 'VENM980101', 'VOGG950101', 'WEIL970101', 'WEIL970102', 'ZHAC000101', 'ZHAC000102', 'ZHAC000103', 'ZHAC000104', 'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'ss_class', 'aa_prop_change', 'electrostatics_change', 'polarity_change', 'water_change', 'active_site', 'maf', 'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all', 'lineage_count_unique', 'dst', 'dst_mode']
PASS: but NOT writing mask file
PASS: But NOT writing processed file
#################################################################
SUCCESS: Extacted training data for gene: pnca
Dim of training_df: (424, 173)
This EXCLUDES Odds Ratio
############################################################
Input params:
Dim of input df: (424, 173)
Data type to split: actual
Split type: 70_30
target colname: dst_mode
oversampling enabled
PASS: x_features has no target variable and no dst column
Dropped cols: 2
These were: dst_mode and dst
No. of cols in input df: 173
No.of cols dropped: 2
No. of columns for x_features: 171
-------------------------------------------------------------
Successfully generated training and test data:
Data used: actual
Split type: 70_30
Total no. of input features: 171
--------No. of numerical features: 165
--------No. of categorical features: 6
===========================
Resampling: NONE
Baseline
===========================
Total data size: 69
Train data size: (46, 171)
y_train numbers: Counter({0: 23, 1: 23})
Test data size: (23, 171)
y_test_numbers: Counter({0: 12, 1: 11})
y_train ratio: 1.0
y_test ratio: 1.0909090909090908
-------------------------------------------------------------
Simple Random OverSampling
Counter({0: 23, 1: 23})
(46, 171)
Simple Random UnderSampling
Counter({0: 23, 1: 23})
(46, 171)
Simple Combined Over and UnderSampling
Counter({0: 23, 1: 23})
(46, 171)
SMOTE_NC OverSampling
Counter({0: 23, 1: 23})
(46, 171)
Generated Resampled data as below:
=================================
Resampling: Random oversampling
================================
Train data size: (46, 171)
y_train numbers: 46
y_train ratio: 1.0
y_test ratio: 1.0909090909090908
================================
Resampling: Random underampling
================================
Train data size: (46, 171)
y_train numbers: 46
y_train ratio: 1.0
y_test ratio: 1.0909090909090908
================================
Resampling:Combined (over+under)
================================
Train data size: (46, 171)
y_train numbers: 46
y_train ratio: 1.0
y_test ratio: 1.0909090909090908
==============================
Resampling: Smote NC
==============================
Train data size: (46, 171)
y_train numbers: 46
y_train ratio: 1.0
y_test ratio: 1.0909090909090908
-------------------------------------------------------------
==============================================================
Running several classification models (n): 24
List of models:
('AdaBoost Classifier', AdaBoostClassifier(random_state=42))
('Bagging Classifier', BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3))
('Decision Tree', DecisionTreeClassifier(random_state=42))
('Extra Tree', ExtraTreeClassifier(random_state=42))
('Extra Trees', ExtraTreesClassifier(random_state=42))
('Gradient Boosting', GradientBoostingClassifier(random_state=42))
('Gaussian NB', GaussianNB())
('Gaussian Process', GaussianProcessClassifier(random_state=42))
('K-Nearest Neighbors', KNeighborsClassifier())
('LDA', LinearDiscriminantAnalysis())
('Logistic Regression', LogisticRegression(random_state=42))
('Logistic RegressionCV', LogisticRegressionCV(cv=3, random_state=42))
('MLP', MLPClassifier(max_iter=500, random_state=42))
('Multinomial', MultinomialNB())
('Naive Bayes', BernoulliNB())
('Passive Aggresive', PassiveAggressiveClassifier(n_jobs=12, random_state=42))
('QDA', QuadraticDiscriminantAnalysis())
('Random Forest', RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42))
('Random Forest2', RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42))
('Ridge Classifier', RidgeClassifier(random_state=42))
('Ridge ClassifierCV', RidgeClassifierCV(cv=3))
('SVC', SVC(random_state=42))
('Stochastic GDescent', SGDClassifier(n_jobs=12, random_state=42))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
('XGBoost', XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0))
================================================================
Running classifier: 1
Model_name: AdaBoost Classifier
Model func: AdaBoostClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', AdaBoostClassifier(random_state=42))])
key: fit_time
value: [0.06783319 0.06749201 0.06719685 0.06756043 0.06702876 0.06712174
0.06725192 0.06728387 0.06741643 0.06739259]
mean value: 0.06735777854919434
key: score_time
value: [0.01468825 0.01459002 0.01462436 0.01456857 0.01446748 0.01512146
0.01455379 0.01437521 0.01465225 0.01447845]
mean value: 0.01461198329925537
key: test_mcc
value: [-0.16666667 -0.16666667 0. 0.16666667 0.16666667 0.
0.57735027 1. 0. 0.57735027]
mean value: 0.21547005383792514
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.4 0.57142857 0.66666667 0.66666667 0.
0.66666667 1. 0.66666667 0.8 ]
mean value: 0.5838095238095238
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0.33333333 0.4 0.66666667 0.66666667 0.
1. 1. 0.5 0.66666667]
mean value: 0.5566666666666668
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.4 0.6 0.6 0.4 0.75 1. 0.5 0.75]
mean value: 0.58
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.41666667 0.5 0.58333333 0.58333333 0.5
0.75 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.25 0.4 0.5 0.5 0.
0.5 1. 0.5 0.66666667]
mean value: 0.45666666666666667
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.4s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.2s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.2s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.4s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.2s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.2s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
MCC on Blind test: 0.03
MCC on Training: 0.22
Running classifier: 2
Model_name: Bagging Classifier
Model func: BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True,
random_state=42, verbose=3))])
key: fit_time
value: [0.33801174 0.1162312 0.12495995 0.15188313 0.11752677 0.11360383
0.09869051 0.1314795 0.12863684 0.14009118]
mean value: 0.14611146450042725
key: score_time
value: [0.07473135 0.07370019 0.05618 0.05608582 0.04175258 0.07161951
0.04995871 0.06391716 0.0629313 0.05745983]
mean value: 0.06083364486694336
key: test_mcc
value: [ 0.16666667 -0.16666667 0. -0.66666667 1. 0.40824829
1. 0.57735027 0.57735027 0.57735027]
mean value: 0.3473632431366074
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0.4 0.57142857 0.33333333 1. 0.5
1. 0.66666667 0.8 0.8 ]
mean value: 0.6571428571428571
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0.33333333 0.4 0.33333333 1. 1.
1. 1. 0.66666667 0.66666667]
mean value: 0.6900000000000001
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 1. 0.33333333
1. 0.5 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.4 0.4 0.2 1. 0.6 1. 0.75 0.75 0.75]
mean value: 0.645
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.41666667 0.5 0.16666667 1. 0.66666667
1. 0.75 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0.25 0.4 0.2 1. 0.33333333
1. 0.5 0.66666667 0.66666667]
mean value: 0.535
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.35
Running classifier: 3
Model_name: Decision Tree
Model func: DecisionTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', DecisionTreeClassifier(random_state=42))])
key: fit_time
value: [0.02262235 0.01043868 0.01007891 0.00932217 0.00924635 0.00878453
0.00917578 0.00993061 0.00921011 0.00897956]
mean value: 0.01077890396118164
key: score_time
value: [0.00955677 0.0096209 0.00956392 0.00855827 0.00834942 0.00865555
0.00930476 0.00844455 0.00916529 0.00850511]
mean value: 0.008972454071044921
key: test_mcc
value: [ 0.61237244 0.61237244 0. -0.66666667 -0.40824829 0.40824829
0. 0. 0.57735027 0.57735027]
mean value: 0.17127787431041744
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.57142857 0.33333333 0.57142857 0.5
0.5 0.5 0.8 0.8 ]
mean value: 0.590952380952381
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.4 0.33333333 0.5 1.
0.5 0.5 0.66666667 0.66666667]
mean value: 0.6566666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.4 0.2 0.4 0.6 0.5 0.5 0.75 0.75]
mean value: 0.5700000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.5 0.16666667 0.33333333 0.66666667
0.5 0.5 0.75 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.4 0.2 0.4 0.33333333
0.33333333 0.33333333 0.66666667 0.66666667]
mean value: 0.4333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.21
MCC on Training: 0.17
Running classifier: 4
Model_name: Extra Tree
Model func: ExtraTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreeClassifier(random_state=42))])
key: fit_time
value: [0.0095408 0.00976348 0.00828624 0.00929856 0.00957036 0.00922179
0.00847864 0.0090251 0.00884175 0.0087657 ]
mean value: 0.009079241752624511
key: score_time
value: [0.00931311 0.00936508 0.00882268 0.00957179 0.00949097 0.00839734
0.00880003 0.00881672 0.00898719 0.00926876]
mean value: 0.009083366394042969
key: test_mcc
value: [ 0.61237244 -0.40824829 0.40824829 -0.40824829 0.61237244 0.66666667
1. 0.57735027 0. 0. ]
mean value: 0.30605135167840186
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0. 0.66666667 0.57142857 0.85714286 0.8
1. 0.8 0.5 0.5 ]
mean value: 0.6361904761904762
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0. 0.5 0.5 0.75 1.
1. 0.66666667 0.5 0.5 ]
mean value: 0.6416666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.66666667
1. 1. 0.5 0.5 ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.4 0.6 0.4 0.8 0.8 1. 0.75 0.5 0.5 ]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.33333333 0.66666667 0.33333333 0.75 0.83333333
1. 0.75 0.5 0.5 ]
mean value: 0.6416666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0. 0.5 0.4 0.75 0.66666667
1. 0.66666667 0.33333333 0.33333333]
mean value: 0.5149999999999999
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.14
MCC on Training: 0.31
Running classifier: 5
Model_name: Extra Trees
Model func: ExtraTreesClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreesClassifier(random_state=42))])
key: fit_time
value: [0.07736874 0.07587075 0.07727671 0.07741952 0.07707381 0.07746553
0.07830501 0.0808382 0.07705951 0.0806613 ]
mean value: 0.0779339075088501
key: score_time
value: [0.01677871 0.01699662 0.01756477 0.01691628 0.0181694 0.01817966
0.01690698 0.01796007 0.01764846 0.01745462]
mean value: 0.01745755672454834
key: test_mcc
value: [ 0.16666667 -0.66666667 0.66666667 -0.40824829 0.61237244 0.40824829
0.57735027 0.57735027 0.57735027 -0.57735027]
mean value: 0.19337396407417132
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.57142857 0.85714286 0.5
0.66666667 0.66666667 0.8 0.4 ]
mean value: 0.5761904761904761
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.5 0.75 1.
1. 1. 0.66666667 0.33333333]
mean value: 0.6416666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 0.5 1. 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.8 0.4 0.8 0.6 0.75 0.75 0.75 0.25]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.83333333 0.33333333 0.75 0.66666667
0.75 0.75 0.75 0.25 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.4 0.75 0.33333333
0.5 0.5 0.66666667 0.25 ]
mean value: 0.43999999999999995
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.15
MCC on Training: 0.19
Running classifier: 6
Model_name: Gradient Boosting
Model func: GradientBoostingClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GradientBoostingClassifier(random_state=42))])
key: fit_time
value: [0.13188934 0.12295365 0.11698937 0.1254096 0.12188792 0.1071713
0.12261558 0.1298039 0.13340831 0.11206651]
mean value: 0.12241954803466797
key: score_time
value: [0.00997305 0.00993562 0.00953174 0.00948119 0.00890565 0.00924945
0.01009345 0.00936818 0.00927591 0.00894117]
mean value: 0.00947554111480713
key: test_mcc
value: [0.61237244 0.61237244 0. 0.16666667 0.16666667 0.40824829
0.57735027 0. 0.57735027 0.57735027]
mean value: 0.36983773027576633
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.57142857 0.66666667 0.66666667 0.5
0.66666667 0.5 0.8 0.8 ]
mean value: 0.6504761904761904
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.4 0.66666667 0.66666667 1.
1. 0.5 0.66666667 0.66666667]
mean value: 0.7566666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.4 0.6 0.6 0.6 0.75 0.5 0.75 0.75]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.5 0.58333333 0.58333333 0.66666667
0.75 0.5 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.4 0.5 0.5 0.33333333
0.5 0.33333333 0.66666667 0.66666667]
mean value: 0.49000000000000005
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.48
MCC on Training: 0.37
Running classifier: 7
Model_name: Gaussian NB
Model func: GaussianNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianNB())])
key: fit_time
value: [0.00851822 0.00807571 0.00810242 0.00794816 0.00804257 0.00805759
0.0081172 0.00809193 0.00792861 0.00833821]
mean value: 0.008122062683105469
key: score_time
value: [0.0083971 0.00834107 0.00834846 0.00837612 0.00838208 0.0083952
0.00828958 0.00836086 0.00835633 0.00842142]
mean value: 0.008366823196411133
key: test_mcc
value: [-0.16666667 0. 0. 0.61237244 0. 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.34313043286826167
key: train_mcc
value: [0.57570364 0.698212 0.63496528 0.49692935 0.59982886 0.63994524
0.56652882 0.52704628 0.54659439 0.60609153]
mean value: 0.5891845382894122
key: test_fscore
value: [0.4 0.57142857 0.57142857 0.85714286 0.75 0.5
1. 1. 0.66666667 0.8 ]
mean value: 0.7116666666666667
key: train_fscore
value: [0.80851064 0.85714286 0.83333333 0.76595745 0.80851064 0.82608696
0.8 0.78431373 0.79166667 0.81632653]
mean value: 0.8091848793171292
key: test_precision
value: [0.33333333 0.4 0.4 0.75 0.6 1.
1. 1. 0.5 0.66666667]
mean value: 0.665
key: train_precision
value: [0.73076923 0.75 0.74074074 0.66666667 0.7037037 0.73076923
0.68965517 0.66666667 0.7037037 0.71428571]
mean value: 0.7096960829719451
key: test_recall
value: [0.5 1. 1. 1. 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.8833333333333332
key: train_recall
value: [0.9047619 1. 0.95238095 0.9 0.95 0.95
0.95238095 0.95238095 0.9047619 0.95238095]
mean value: 0.9419047619047619
key: test_accuracy
value: [0.4 0.4 0.4 0.8 0.6 0.6 1. 1. 0.5 0.75]
mean value: 0.645
key: train_accuracy
value: [0.7804878 0.82926829 0.80487805 0.73170732 0.7804878 0.80487805
0.76190476 0.73809524 0.76190476 0.78571429]
mean value: 0.7779326364692218
key: test_roc_auc
value: [0.41666667 0.5 0.5 0.75 0.5 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [0.77738095 0.825 0.80119048 0.73571429 0.78452381 0.80833333
0.76190476 0.73809524 0.76190476 0.78571429]
mean value: 0.7779761904761904
key: test_jcc
value: [0.25 0.4 0.4 0.75 0.6 0.33333333
1. 1. 0.5 0.66666667]
mean value: 0.5900000000000001
key: train_jcc
value: [0.67857143 0.75 0.71428571 0.62068966 0.67857143 0.7037037
0.66666667 0.64516129 0.65517241 0.68965517]
mean value: 0.6802477473500833
MCC on Blind test: -0.03
MCC on Training: 0.34
Running classifier: 8
Model_name: Gaussian Process
Model func: GaussianProcessClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianProcessClassifier(random_state=42))])
key: fit_time
value: [0.01431918 0.00979662 0.01003432 0.00989723 0.01114225 0.01084018
0.0105567 0.01138735 0.01066327 0.01148033]
mean value: 0.011011743545532226
key: score_time
value: [0.0105226 0.00871873 0.00889897 0.00847268 0.00946379 0.00971556
0.00955772 0.00972652 0.00884008 0.00960922]
mean value: 0.009352588653564453
key: test_mcc
value: [ 0.16666667 -0.66666667 0.66666667 -0.40824829 1. 0.40824829
0.57735027 1. -0.57735027 -0.57735027]
mean value: 0.15893163974770408
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.57142857 1. 0.5
0.66666667 1. 0.4 0.4 ]
mean value: 0.5838095238095239
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.5 1. 1.
1. 1. 0.33333333 0.33333333]
mean value: 0.6333333333333332
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.8 0.4 1. 0.6 0.75 1. 0.25 0.25]
mean value: 0.585
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.83333333 0.33333333 1. 0.66666667
0.75 1. 0.25 0.25 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.4 1. 0.33333333
0.5 1. 0.25 0.25 ]
mean value: 0.4733333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.16
Running classifier: 9
Model_name: K-Nearest Neighbors
Model func: KNeighborsClassifier()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', KNeighborsClassifier())])
key: fit_time
value: [0.00786042 0.01122022 0.00837564 0.00769067 0.00771523 0.00770259
0.00853324 0.00769567 0.00769591 0.00785661]
mean value: 0.008234620094299316
key: score_time
value: [0.04532456 0.0244391 0.00903034 0.00913548 0.00892591 0.01360607
0.0107758 0.0088439 0.0089047 0.00878835]
mean value: 0.014777421951293945
key: test_mcc
value: [ 0.16666667 -0.16666667 0.40824829 -0.40824829 0.16666667 -0.61237244
0. 0.57735027 0. 0.57735027]
mean value: 0.07089947693501238
key: train_mcc
value: [0.36718832 0.56527676 0.56527676 0.56086079 0.56086079 0.52420964
0.43656413 0.43052839 0.4472136 0.47673129]
mean value: 0.49347104597079217
key: test_fscore
value: [0.5 0.4 0.66666667 0.57142857 0.66666667 0.
0.5 0.8 0.66666667 0.8 ]
mean value: 0.5571428571428572
key: train_fscore
value: [0.71111111 0.8 0.8 0.76923077 0.76923077 0.77272727
0.73913043 0.72727273 0.75 0.74418605]
mean value: 0.7582889130866886
key: test_precision
value: [0.5 0.33333333 0.5 0.5 0.66666667 0.
0.5 0.66666667 0.5 0.66666667]
mean value: 0.4833333333333333
key: train_precision
value: [0.66666667 0.75 0.75 0.78947368 0.78947368 0.70833333
0.68 0.69565217 0.66666667 0.72727273]
mean value: 0.722353893627349
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [0.76190476 0.85714286 0.85714286 0.75 0.75 0.85
0.80952381 0.76190476 0.85714286 0.76190476]
mean value: 0.8016666666666665
key: test_accuracy
value: [0.6 0.4 0.6 0.4 0.6 0.2 0.5 0.75 0.5 0.75]
mean value: 0.53
key: train_accuracy
value: [0.68292683 0.7804878 0.7804878 0.7804878 0.7804878 0.75609756
0.71428571 0.71428571 0.71428571 0.73809524]
mean value: 0.7441927990708479
key: test_roc_auc
value: [0.58333333 0.41666667 0.66666667 0.33333333 0.58333333 0.25
0.5 0.75 0.5 0.75 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.68095238 0.77857143 0.77857143 0.7797619 0.7797619 0.75833333
0.71428571 0.71428571 0.71428571 0.73809524]
mean value: 0.7436904761904762
key: test_jcc
value: [0.33333333 0.25 0.5 0.4 0.5 0.
0.33333333 0.66666667 0.5 0.66666667]
mean value: 0.41500000000000004
key: train_jcc
value: [0.55172414 0.66666667 0.66666667 0.625 0.625 0.62962963
0.5862069 0.57142857 0.6 0.59259259]
mean value: 0.6114915161466885
MCC on Blind test: 0.21
MCC on Training: 0.07
Running classifier: 10
Model_name: LDA
Model func: LinearDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LinearDiscriminantAnalysis())])
key: fit_time
value: [0.01125813 0.01287079 0.0132699 0.01359797 0.02441359 0.01546049
0.01397657 0.01555419 0.02130198 0.01370549]
mean value: 0.01554090976715088
key: score_time
value: [0.01102233 0.01101065 0.01145315 0.01126719 0.01160836 0.01171756
0.01192927 0.01170683 0.01162624 0.0114224 ]
mean value: 0.011476397514343262
key: test_mcc
value: [ 0.16666667 -0.16666667 -0.61237244 -0.40824829 0.40824829 -0.16666667
-0.57735027 1. 1. 0.57735027]
mean value: 0.12209608976375388
key: train_mcc
value: [0.8547619 0.75714286 0.95227002 0.90238095 0.90238095 0.85441771
0.9047619 0.9047619 0.76277007 0.9047619 ]
mean value: 0.8700410175391831
key: test_fscore
value: [0.5 0.4 0.33333333 0.57142857 0.5 0.4
0.4 1. 1. 0.66666667]
mean value: 0.5771428571428572
key: train_fscore
value: [0.92682927 0.87804878 0.97674419 0.95 0.95 0.92307692
0.95238095 0.95238095 0.87804878 0.95238095]
mean value: 0.9339890795534584
key: test_precision
value: [0.5 0.33333333 0.25 0.5 1. 0.5
0.33333333 1. 1. 1. ]
mean value: 0.6416666666666666
key: train_precision
value: [0.95 0.9 0.95454545 0.95 0.95 0.94736842
0.95238095 0.95238095 0.9 0.95238095]
mean value: 0.9409056732740944
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0.33333333 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.5833333333333333
key: train_recall
value: [0.9047619 0.85714286 1. 0.95 0.95 0.9
0.95238095 0.95238095 0.85714286 0.95238095]
mean value: 0.9276190476190477
key: test_accuracy
value: [0.6 0.4 0.2 0.4 0.6 0.4 0.25 1. 1. 0.75]
mean value: 0.5599999999999999
key: train_accuracy
value: [0.92682927 0.87804878 0.97560976 0.95121951 0.95121951 0.92682927
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347851335656214
key: test_roc_auc
value: [0.58333333 0.41666667 0.25 0.33333333 0.66666667 0.41666667
0.25 1. 1. 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [0.92738095 0.87857143 0.975 0.95119048 0.95119048 0.92619048
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347619047619047
key: test_jcc
value: [0.33333333 0.25 0.2 0.4 0.33333333 0.25
0.25 1. 1. 0.5 ]
mean value: 0.45166666666666666
key: train_jcc
value: [0.86363636 0.7826087 0.95454545 0.9047619 0.9047619 0.85714286
0.90909091 0.90909091 0.7826087 0.90909091]
mean value: 0.8777338603425558
MCC on Blind test: -0.3
MCC on Training: 0.12
Running classifier: 11
Model_name: Logistic Regression
Model func: LogisticRegression(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegression(random_state=42))])
key: fit_time
value: [0.02254915 0.01716089 0.01368785 0.01643443 0.01762676 0.01714158
0.01446795 0.01608992 0.01492 0.01535702]
mean value: 0.01654355525970459
key: score_time
value: [0.011446 0.00895071 0.00907683 0.00912094 0.00917935 0.0093472
0.00887179 0.00914478 0.0087173 0.00850916]
mean value: 0.009236407279968262
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 -0.40824829 0.61237244 -0.61237244
1. 1. 0. 1. ]
mean value: 0.09587585476806848
key: train_mcc
value: [0.85441771 0.95238095 1. 0.90238095 0.90238095 0.90649828
0.85811633 0.85811633 0.85811633 0.9047619 ]
mean value: 0.8997169740060625
key: test_fscore
value: [0. 0.33333333 0.33333333 0.57142857 0.85714286 0.
1. 1. 0.5 1. ]
mean value: 0.5595238095238095
key: train_fscore
value: [0.93023256 0.97560976 1. 0.95 0.95 0.94736842
0.92682927 0.92682927 0.92682927 0.95238095]
mean value: 0.9486079492548729
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
key: test_precision
value: [0. 0.25 0.25 0.5 0.75 0. 1. 1. 0.5 1. ]
mean value: 0.525
key: train_precision
value: [0.90909091 1. 1. 0.95 0.95 1.
0.95 0.95 0.95 0.95238095]
mean value: 0.9611471861471861
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_recall
value: [0.95238095 0.95238095 1. 0.95 0.95 0.9
0.9047619 0.9047619 0.9047619 0.95238095]
mean value: 0.9371428571428572
key: test_accuracy
value: [0.4 0.2 0.2 0.4 0.8 0.2 1. 1. 0.5 1. ]
mean value: 0.5700000000000001
key: train_accuracy
value: [0.92682927 0.97560976 1. 0.95121951 0.95121951 0.95121951
0.92857143 0.92857143 0.92857143 0.95238095]
mean value: 0.9494192799070849
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.33333333 0.75 0.25
1. 1. 0.5 1. ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [0.92619048 0.97619048 1. 0.95119048 0.95119048 0.95
0.92857143 0.92857143 0.92857143 0.95238095]
mean value: 0.9492857142857142
key: test_jcc
value: [0. 0.2 0.2 0.4 0.75 0.
1. 1. 0.33333333 1. ]
mean value: 0.4883333333333333
key: train_jcc
value: [0.86956522 0.95238095 1. 0.9047619 0.9047619 0.9
0.86363636 0.86363636 0.86363636 0.90909091]
mean value: 0.9031469979296066
MCC on Blind test: 0.03
MCC on Training: 0.1
Running classifier: 12
Model_name: Logistic RegressionCV
Model func: LogisticRegressionCV(cv=3, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegressionCV(cv=3, random_state=42))])
key: fit_time
value: [0.16370106 0.16942191 0.15406322 0.17140174 0.17334843 0.16096044
0.17889285 0.18087649 0.17605615 0.18340373]
mean value: 0.17121260166168212
key: score_time
value: [0.00998878 0.00968575 0.00946856 0.0090487 0.00928116 0.00910926
0.0089922 0.00937796 0.0093286 0.00960755]
mean value: 0.0093888521194458
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 -0.40824829 0.16666667 0.
1. 1. 0. 0. ]
mean value: 0.012542521434735132
key: train_mcc
value: [0.41487884 1. 0.7098505 1. 1. 0.95227002
0.85811633 1. 1. 1. ]
mean value: 0.8935115692085429
key: test_fscore
value: [0. 0.33333333 0.33333333 0.57142857 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4904761904761905
key: train_fscore
value: [0.72727273 1. 0.86363636 1. 1. 0.97435897
0.92682927 1. 1. 1. ]
mean value: 0.9492097333560748
key: test_precision
value: [0. 0.25 0.25 0.5 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4666666666666666
key: train_precision
value: [0.69565217 1. 0.82608696 1. 1. 1.
0.95 1. 1. 1. ]
mean value: 0.9471739130434782
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.5333333333333333
key: train_recall
value: [0.76190476 1. 0.9047619 1. 1. 0.95
0.9047619 1. 1. 1. ]
mean value: 0.9521428571428571
key: test_accuracy
value: [0.4 0.2 0.2 0.4 0.6 0.4 1. 1. 0.5 0.5]
mean value: 0.52
key: train_accuracy
value: [0.70731707 1. 0.85365854 1. 1. 0.97560976
0.92857143 1. 1. 1. ]
mean value: 0.9465156794425088
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.33333333 0.58333333 0.5
1. 1. 0.5 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [0.70595238 1. 0.85238095 1. 1. 0.975
0.92857143 1. 1. 1. ]
mean value: 0.9461904761904762
key: test_jcc
value: [0. 0.2 0.2 0.4 0.5 0.
1. 1. 0.33333333 0.33333333]
mean value: 0.39666666666666667
key: train_jcc
value: [0.57142857 1. 0.76 1. 1. 0.95
0.86363636 1. 1. 1. ]
mean value: 0.9145064935064935
MCC on Blind test: -0.05
MCC on Training: 0.01
Running classifier: 13
Model_name: MLP
Model func: MLPClassifier(max_iter=500, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MLPClassifier(max_iter=500, random_state=42))])
key: fit_time
value: [0.42803121 0.32382941 0.36591315 0.41544604 0.28536773 0.44046259
0.35071921 0.25666571 0.38323689 0.473207 ]
mean value: 0.3722878932952881
key: score_time
value: [0.0120132 0.01182461 0.01206875 0.0118978 0.01172709 0.01191211
0.01193714 0.01184559 0.01392198 0.01191545]
mean value: 0.012106370925903321
key: test_mcc
value: [ 0. -0.61237244 -0.16666667 -0.40824829 0.16666667 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.19649778334938311
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.33333333 0.4 0.57142857 0.66666667 0.5
1. 1. 0.5 0.8 ]
mean value: 0.5771428571428572
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.25 0.33333333 0.5 0.66666667 1.
1. 1. 0.5 0.66666667]
mean value: 0.5916666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.33333333
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.4 0.4 0.6 0.6 1. 1. 0.5 0.75]
mean value: 0.6050000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.5 0.25 0.41666667 0.33333333 0.58333333 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0. 0.2 0.25 0.4 0.5 0.33333333
1. 1. 0.33333333 0.66666667]
mean value: 0.4683333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.2
Running classifier: 14
Model_name: Multinomial
Model func: MultinomialNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MultinomialNB())])
key: fit_time
value: [0.01151156 0.01146364 0.00860405 0.00855684 0.00811434 0.00844884
0.00846481 0.00822067 0.00822854 0.0082438 ]
mean value: 0.00898571014404297
key: score_time
value: [0.01145649 0.0117712 0.00868416 0.00829554 0.00837445 0.00831199
0.00846839 0.0083921 0.00859284 0.00819755]
mean value: 0.009054470062255859
key: test_mcc
value: [-0.40824829 0. -0.61237244 -0.40824829 0.16666667 0.
1. 0.57735027 0.57735027 0. ]
mean value: 0.08924981884223976
key: train_mcc
value: [0.36515617 0.31666667 0.46623254 0.46300848 0.46300848 0.41428571
0.43052839 0.38138504 0.42857143 0.43052839]
mean value: 0.415937128657245
key: test_fscore
value: [0. 0.57142857 0.33333333 0.57142857 0.66666667 0.
1. 0.8 0.8 0.5 ]
mean value: 0.5242857142857142
key: train_fscore
value: [0.69767442 0.66666667 0.75555556 0.71794872 0.71794872 0.7
0.72727273 0.69767442 0.71428571 0.72727273]
mean value: 0.712229966416013
key: test_precision
value: [0. 0.4 0.25 0.5 0.66666667 0.
1. 0.66666667 0.66666667 0.5 ]
mean value: 0.46499999999999997
key: train_precision
value: [0.68181818 0.66666667 0.70833333 0.73684211 0.73684211 0.7
0.69565217 0.68181818 0.71428571 0.69565217]
mean value: 0.701791063627448
key: test_recall
value: [0. 1. 0.5 0.66666667 0.66666667 0.
1. 1. 1. 0.5 ]
mean value: 0.6333333333333333
key: train_recall
value: [0.71428571 0.66666667 0.80952381 0.7 0.7 0.7
0.76190476 0.71428571 0.71428571 0.76190476]
mean value: 0.7242857142857143
key: test_accuracy
value: [0.4 0.4 0.2 0.4 0.6 0.4 1. 0.75 0.75 0.5 ]
mean value: 0.54
key: train_accuracy
value: [0.68292683 0.65853659 0.73170732 0.73170732 0.73170732 0.70731707
0.71428571 0.69047619 0.71428571 0.71428571]
mean value: 0.7077235772357724
key: test_roc_auc
value: [0.33333333 0.5 0.25 0.33333333 0.58333333 0.5
1. 0.75 0.75 0.5 ]
mean value: 0.55
key: train_roc_auc
value: [0.68214286 0.65833333 0.7297619 0.73095238 0.73095238 0.70714286
0.71428571 0.69047619 0.71428571 0.71428571]
mean value: 0.7072619047619048
key: test_jcc
value: [0. 0.4 0.2 0.4 0.5 0.
1. 0.66666667 0.66666667 0.33333333]
mean value: 0.41666666666666663
key: train_jcc
value: [0.53571429 0.5 0.60714286 0.56 0.56 0.53846154
0.57142857 0.53571429 0.55555556 0.57142857]
mean value: 0.5535445665445665
MCC on Blind test: 0.23
MCC on Training: 0.09
Running classifier: 15
Model_name: Naive Bayes
Model func: BernoulliNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', BernoulliNB())])
key: fit_time
value: [0.00851035 0.00897813 0.00825548 0.00862885 0.00820041 0.00846744
0.00815582 0.00831628 0.00837684 0.00813842]
mean value: 0.008402800559997559
key: score_time
value: [0.00844598 0.0085485 0.00846505 0.00835204 0.00858307 0.00835848
0.00881934 0.00842476 0.00843501 0.00827336]
mean value: 0.008470559120178222
key: test_mcc
value: [ 0.61237244 -0.16666667 -0.61237244 1. -0.61237244 0.40824829
0.57735027 0. 0.57735027 0.57735027]
mean value: 0.2361259995670279
key: train_mcc
value: [0.65952381 0.78072006 0.78072006 0.698212 0.65915306 0.81975606
0.67357531 0.78446454 0.81322028 0.78446454]
mean value: 0.7453809730969173
key: test_fscore
value: [0.66666667 0.4 0.33333333 1. 0. 0.5
0.66666667 0. 0.8 0.66666667]
mean value: 0.5033333333333333
key: train_fscore
value: [0.82926829 0.86486486 0.86486486 0.78787879 0.75 0.88888889
0.82051282 0.86486486 0.9 0.86486486]
mean value: 0.8436008249422884
key: test_precision
value: [1. 0.33333333 0.25 1. 0. 1.
1. 0. 0.66666667 1. ]
mean value: 0.625
key: train_precision
value: [0.85 1. 1. 1. 1. 1.
0.88888889 1. 0.94736842 1. ]
mean value: 0.9686257309941521
key: test_recall
value: [0.5 0.5 0.5 1. 0. 0.33333333
0.5 0. 1. 0.5 ]
mean value: 0.4833333333333333
key: train_recall
value: [0.80952381 0.76190476 0.76190476 0.65 0.6 0.8
0.76190476 0.76190476 0.85714286 0.76190476]
mean value: 0.7526190476190475
key: test_accuracy
value: [0.8 0.4 0.2 1. 0.2 0.6 0.75 0.5 0.75 0.75]
mean value: 0.595
key: train_accuracy
value: [0.82926829 0.87804878 0.87804878 0.82926829 0.80487805 0.90243902
0.83333333 0.88095238 0.9047619 0.88095238]
mean value: 0.8621951219512196
key: test_roc_auc
value: [0.75 0.41666667 0.25 1. 0.25 0.66666667
0.75 0.5 0.75 0.75 ]
mean value: 0.6083333333333333
key: train_roc_auc
value: [0.8297619 0.88095238 0.88095238 0.825 0.8 0.9
0.83333333 0.88095238 0.9047619 0.88095238]
mean value: 0.8616666666666667
key: test_jcc
value: [0.5 0.25 0.2 1. 0. 0.33333333
0.5 0. 0.66666667 0.5 ]
mean value: 0.39499999999999996
key: train_jcc
value: [0.70833333 0.76190476 0.76190476 0.65 0.6 0.8
0.69565217 0.76190476 0.81818182 0.76190476]
mean value: 0.7319786373047242
MCC on Blind test: -0.07
MCC on Training: 0.24
Running classifier: 16
Model_name: Passive Aggresive
Model func: PassiveAggressiveClassifier(n_jobs=12, random_state=42)
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
PassiveAggressiveClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.01073408 0.01036596 0.00996065 0.01032019 0.01004267 0.01050591
0.01174164 0.00820446 0.0084703 0.0082078 ]
mean value: 0.009855365753173828
key: score_time
value: [0.00928855 0.00973248 0.01046205 0.00961065 0.00970221 0.00994372
0.00830007 0.00833607 0.00825286 0.00831652]
mean value: 0.009194517135620117
key: test_mcc
value: [-0.66666667 -0.16666667 -0.61237244 -0.40824829 0.16666667 0.
1. 1. 0. 1. ]
mean value: 0.13127126071736755
key: train_mcc
value: [0.77831178 0.90692382 1. 0.74124932 0.95238095 0.95227002
0.80952381 0.81322028 0.8660254 0.78446454]
mean value: 0.860436992906499
key: test_fscore
value: [0. 0.4 0.33333333 0.57142857 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.5471428571428572
key: train_fscore
value: [0.89361702 0.95 1. 0.86956522 0.97560976 0.97435897
0.9047619 0.90909091 0.92307692 0.86486486]
mean value: 0.9264945570919038
key: test_precision
value: [0. 0.33333333 0.25 0.5 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.525
key: train_precision
value: [0.80769231 1. 1. 0.76923077 0.95238095 1.
0.9047619 0.86956522 1. 1. ]
mean value: 0.9303631151457239
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.5833333333333333
key: train_recall
value: [1. 0.9047619 1. 1. 1. 0.95
0.9047619 0.95238095 0.85714286 0.76190476]
mean value: 0.9330952380952382
key: test_accuracy
value: [0.2 0.4 0.2 0.4 0.6 0.4 1. 1. 0.5 1. ]
mean value: 0.5700000000000001
key: train_accuracy
value: [0.87804878 0.95121951 1. 0.85365854 0.97560976 0.97560976
0.9047619 0.9047619 0.92857143 0.88095238]
mean value: 0.9253193960511034
key: test_roc_auc
value: [0.16666667 0.41666667 0.25 0.33333333 0.58333333 0.5
1. 1. 0.5 1. ]
mean value: 0.575
key: train_roc_auc
value: [0.875 0.95238095 1. 0.85714286 0.97619048 0.975
0.9047619 0.9047619 0.92857143 0.88095238]
mean value: 0.9254761904761905
key: test_jcc
value: [0. 0.25 0.2 0.4 0.5 0.
1. 1. 0.33333333 1. ]
mean value: 0.4683333333333334
key: train_jcc
value: [0.80769231 0.9047619 1. 0.76923077 0.95238095 0.95
0.82608696 0.83333333 0.85714286 0.76190476]
mean value: 0.8662533842968625
MCC on Blind test: 0.05
MCC on Training: 0.13
Running classifier: 17
Model_name: QDA
Model func: QuadraticDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', QuadraticDiscriminantAnalysis())])
key: fit_time
value: [0.00982022 0.0089469 0.00972486 0.00881529 0.00842929 0.00917721
0.00929332 0.00873256 0.00961733 0.00884748]
mean value: 0.009140443801879884
key: score_time
value: [0.0091517 0.00970984 0.00981545 0.00939012 0.00857449 0.00830364
0.00898528 0.00835466 0.00848341 0.00840712]
mean value: 0.008917570114135742
key: test_mcc
value: [-0.40824829 -0.40824829 0. 0.16666667 0.66666667 0.40824829
-0.57735027 1. -0.57735027 0. ]
mean value: 0.027038450449021856
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0. 0. 0.66666667 0.8 0.5
0.4 1. 0.4 0.5 ]
mean value: 0.42666666666666664
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0. 0. 0.66666667 1. 1.
0.33333333 1. 0.33333333 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0. 0. 0.66666667 0.66666667 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.41666666666666663
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.6 0.6 0.8 0.6 0.25 1. 0.25 0.5 ]
mean value: 0.54
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.33333333 0.5 0.58333333 0.83333333 0.66666667
0.25 1. 0.25 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0. 0. 0.5 0.66666667 0.33333333
0.25 1. 0.25 0.33333333]
mean value: 0.33333333333333337
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.07
MCC on Training: 0.03
Running classifier: 18
Model_name: Random Forest
Model func: RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(n_estimators=1000, n_jobs=12,
random_state=42))])
key: fit_time
value: [0.54139686 0.56162095 0.59128451 0.53191924 0.55515862 0.55220151
0.58865476 0.56306243 0.54508495 0.65264559]
mean value: 0.5683029413223266
key: score_time
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0.14018679 0.18660378 0.16074944 0.12714553 0.13100195 0.15878963
0.10892344 0.14203811 0.12527323 0.15291429]
mean value: 0.1433626174926758
key: test_mcc
value: [ 0.16666667 -1. 0.40824829 -0.40824829 1. 0.40824829
0.57735027 1. 0.57735027 -0.57735027]
mean value: 0.21522652263201553
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.66666667 0.57142857 1. 0.5
0.66666667 1. 0.8 0.4 ]
mean value: 0.6104761904761905
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.5 0.5 1. 1.
1. 1. 0.66666667 0.33333333]
mean value: 0.65
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.65
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0. 0.6 0.4 1. 0.6 0.75 1. 0.75 0.25]
mean value: 0.595
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0. 0.66666667 0.33333333 1. 0.66666667
0.75 1. 0.75 0.25 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.5 0.4 1. 0.33333333
0.5 1. 0.66666667 0.25 ]
mean value: 0.49833333333333335
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.22
Running classifier: 19
Model_name: Random Forest2
Model func: RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...age_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12,
oob_score=True, random_state=42))])
key: fit_time
value: [0.82077956 0.86412668 0.82393479 0.85645032 0.82342315 0.85749602
0.87960815 0.85137367 0.86805773 0.8365984 ]
mean value: 0.8481848478317261
key: score_time
value: [0.1831224 0.1837678 0.18144393 0.21479392 0.18798923 0.14913464
0.18382502 0.20368242 0.17561436 0.2173512 ]
mean value: 0.18807249069213866
key: test_mcc
value: [ 0.16666667 -1. 0.40824829 -0.40824829 0.61237244 0.40824829
1. 1. 0.57735027 0. ]
mean value: 0.276463766201595
key: train_mcc
value: [0.7565654 0.90692382 0.8047619 0.90238095 0.8547619 0.85441771
0.9047619 0.80952381 0.81322028 0.80952381]
mean value: 0.841684150259194
key: test_fscore
value: [0.5 0. 0.66666667 0.57142857 0.85714286 0.5
1. 1. 0.8 0.5 ]
mean value: 0.6395238095238095
key: train_fscore
value: [0.88372093 0.95 0.9047619 0.95 0.92682927 0.92307692
0.95238095 0.9047619 0.9 0.9047619 ]
mean value: 0.9200293788268832
key: test_precision
value: [0.5 0. 0.5 0.5 0.75 1.
1. 1. 0.66666667 0.5 ]
mean value: 0.6416666666666667
key: train_precision
value: [0.86363636 1. 0.9047619 0.95 0.9047619 0.94736842
0.95238095 0.9047619 0.94736842 0.9047619 ]
mean value: 0.9279801777170199
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.7
key: train_recall
value: [0.9047619 0.9047619 0.9047619 0.95 0.95 0.9
0.95238095 0.9047619 0.85714286 0.9047619 ]
mean value: 0.9133333333333334
key: test_accuracy
value: [0.6 0. 0.6 0.4 0.8 0.6 1. 1. 0.75 0.5 ]
mean value: 0.625
key: train_accuracy
value: [0.87804878 0.95121951 0.90243902 0.95121951 0.92682927 0.92682927
0.95238095 0.9047619 0.9047619 0.9047619 ]
mean value: 0.9203252032520325
key: test_roc_auc
value: [0.58333333 0. 0.66666667 0.33333333 0.75 0.66666667
1. 1. 0.75 0.5 ]
mean value: 0.625
key: train_roc_auc
value: [0.87738095 0.95238095 0.90238095 0.95119048 0.92738095 0.92619048
0.95238095 0.9047619 0.9047619 0.9047619 ]
mean value: 0.9203571428571428
key: test_jcc
value: [0.33333333 0. 0.5 0.4 0.75 0.33333333
1. 1. 0.66666667 0.33333333]
mean value: 0.5316666666666666
key: train_jcc
value: [0.79166667 0.9047619 0.82608696 0.9047619 0.86363636 0.85714286
0.90909091 0.82608696 0.81818182 0.82608696]
mean value: 0.8527503293807641
MCC on Blind test: -0.13
MCC on Training: 0.28
Running classifier: 20
Model_name: Ridge Classifier
Model func: RidgeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifier(random_state=42))])
key: fit_time
value: [0.02242637 0.00887513 0.00930929 0.00864196 0.00999069 0.00892949
0.00903988 0.00942945 0.00865984 0.00961828]
mean value: 0.010492038726806641
key: score_time
value: [0.02070379 0.00826454 0.00920129 0.0107677 0.00901461 0.00880051
0.00831652 0.00908804 0.00824785 0.0089829 ]
mean value: 0.010138773918151855
key: test_mcc
value: [-0.40824829 -0.16666667 -0.61237244 -0.66666667 0.61237244 0.
1. 1. 0. 1. ]
mean value: 0.17584183762028038
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.4 0.33333333 0.33333333 0.85714286 0.
1. 1. 0.5 1. ]
mean value: 0.5423809523809524
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.33333333 0.25 0.33333333 0.75 0.
1. 1. 0.5 1. ]
mean value: 0.5166666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.
1. 1. 0.5 1. ]
mean value: 0.5833333333333333
key: train_recall
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.2 0.2 0.8 0.4 1. 1. 0.5 1. ]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.41666667 0.25 0.16666667 0.75 0.5
1. 1. 0.5 1. ]
mean value: 0.5916666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.25 0.2 0.2 0.75 0.
1. 1. 0.33333333 1. ]
mean value: 0.47333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.31
MCC on Training: 0.18
Running classifier: 21
Model_name: Ridge ClassifierCV
Model func: RidgeClassifierCV(cv=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifierCV(cv=3))])
key: fit_time
value: [0.02685428 0.02728009 0.0258832 0.02600622 0.02606964 0.02597809
0.02666664 0.02640772 0.02730489 0.02763128]
mean value: 0.026608204841613768
key: score_time
value: [0.00927496 0.00907326 0.00940371 0.00936985 0.00923967 0.00927377
0.00926185 0.00888109 0.00936222 0.00940442]
mean value: 0.00925447940826416
key: test_mcc
value: [ 0. -0.16666667 -0.61237244 -0.66666667 0.61237244 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.21522652263201558
key: train_mcc
value: [1. 1. 0.8547619 1. 1. 1.
0.85811633 1. 1. 1. ]
mean value: 0.9712878235082938
key: test_fscore
value: [0. 0.4 0.33333333 0.33333333 0.85714286 0.5
1. 1. 0.5 0.66666667]
mean value: 0.5590476190476191
key: train_fscore
value: [1. 1. 0.92682927 1. 1. 1.
0.92682927 1. 1. 1. ]
mean value: 0.9853658536585366
key: test_precision
value: [0. 0.33333333 0.25 0.33333333 0.75 1.
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_precision
value: [1. 1. 0.95 1. 1. 1. 0.95 1. 1. 1. ]
mean value: 0.99
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.33333333
1. 1. 0.5 0.5 ]
mean value: 0.5666666666666667
key: train_recall
value: [1. 1. 0.9047619 1. 1. 1. 0.9047619
1. 1. 1. ]
mean value: 0.980952380952381
key: test_accuracy
value: [0.6 0.4 0.2 0.2 0.8 0.6 1. 1. 0.5 0.75]
mean value: 0.605
key: train_accuracy
value: [1. 1. 0.92682927 1. 1. 1.
0.92857143 1. 1. 1. ]
mean value: 0.9855400696864113
key: test_roc_auc
value: [0.5 0.41666667 0.25 0.16666667 0.75 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 0.92738095 1. 1. 1.
0.92857143 1. 1. 1. ]
mean value: 0.9855952380952381
key: test_jcc
value: [0. 0.25 0.2 0.2 0.75 0.33333333
1. 1. 0.33333333 0.5 ]
mean value: 0.45666666666666667
key: train_jcc
value: [1. 1. 0.86363636 1. 1. 1.
0.86363636 1. 1. 1. ]
mean value: 0.9727272727272727
MCC on Blind test: -0.31
MCC on Training: 0.22
Running classifier: 22
Model_name: SVC
Model func: SVC(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SVC(random_state=42))])
key: fit_time
value: [0.01024556 0.00896025 0.00895429 0.00989628 0.00901198 0.00885582
0.00902534 0.00874472 0.00950718 0.00901079]
mean value: 0.009221220016479492
key: score_time
value: [0.00949359 0.0089159 0.00953913 0.00939822 0.00879288 0.00892472
0.00897861 0.00856781 0.00927472 0.00903463]
mean value: 0.009092020988464355
key: test_mcc
value: [-0.40824829 -0.16666667 -0.16666667 -0.40824829 0.16666667 0.
1. 0.57735027 0. 0. ]
mean value: 0.059418702159523294
key: train_mcc
value: [0.65952381 0.8547619 0.75714286 0.7633652 0.65871309 0.85441771
0.76980036 0.62187434 0.71428571 0.71754731]
mean value: 0.7371432287703027
key: test_fscore
value: [0. 0.4 0.4 0.57142857 0.66666667 0.
1. 0.66666667 0.5 0.5 ]
mean value: 0.4704761904761904
key: train_fscore
value: [0.82926829 0.92682927 0.87804878 0.86486486 0.82051282 0.92307692
0.87179487 0.8 0.85714286 0.86363636]
mean value: 0.8635175042492115
key: test_precision
value: [0. 0.33333333 0.33333333 0.5 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [0.85 0.95 0.9 0.94117647 0.84210526 0.94736842
0.94444444 0.84210526 0.85714286 0.82608696]
mean value: 0.8900429676065696
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 0.5 0.5 0.5 ]
mean value: 0.4833333333333333
key: train_recall
value: [0.80952381 0.9047619 0.85714286 0.8 0.8 0.9
0.80952381 0.76190476 0.85714286 0.9047619 ]
mean value: 0.8404761904761904
key: test_accuracy
value: [0.4 0.4 0.4 0.4 0.6 0.4 1. 0.75 0.5 0.5 ]
mean value: 0.5349999999999999
key: train_accuracy
value: [0.82926829 0.92682927 0.87804878 0.87804878 0.82926829 0.92682927
0.88095238 0.80952381 0.85714286 0.85714286]
mean value: 0.8673054587688733
key: test_roc_auc
value: [0.33333333 0.41666667 0.41666667 0.33333333 0.58333333 0.5
1. 0.75 0.5 0.5 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.8297619 0.92738095 0.87857143 0.87619048 0.82857143 0.92619048
0.88095238 0.80952381 0.85714286 0.85714286]
mean value: 0.8671428571428572
key: test_jcc
value: [0. 0.25 0.25 0.4 0.5 0.
1. 0.5 0.33333333 0.33333333]
mean value: 0.3566666666666667
key: train_jcc
value: [0.70833333 0.86363636 0.7826087 0.76190476 0.69565217 0.85714286
0.77272727 0.66666667 0.75 0.76 ]
mean value: 0.7618672124976473
MCC on Blind test: 0.12
MCC on Training: 0.06
Running classifier: 23
Model_name: Stochastic GDescent
Model func: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:427: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_CV['source_data'] = 'CV'
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:454: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_BT['source_data'] = 'BT'
SGDClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SGDClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00863791 0.00830722 0.00813651 0.00829339 0.00823212 0.00840449
0.0086019 0.00838947 0.00839806 0.00823975]
mean value: 0.008364081382751465
key: score_time
value: [0.00840497 0.00825453 0.00825953 0.00823116 0.0082612 0.00835109
0.00835919 0.00820303 0.0082593 0.00819135]
mean value: 0.008277535438537598
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 0.16666667 0. 0.
1. 0.57735027 0. 0.57735027]
mean value: 0.0688374043190466
key: train_mcc
value: [0.90649828 1. 1. 0.95227002 0.70272837 1.
0.55901699 0.40824829 0.36760731 0.8660254 ]
mean value: 0.7762394663113877
key: test_fscore
value: [0. 0.33333333 0.33333333 0.66666667 0.75 0.
1. 0.66666667 0.66666667 0.66666667]
mean value: 0.5083333333333334
key: train_fscore
value: [0.95454545 1. 1. 0.97435897 0.85106383 1.
0.64516129 0.44444444 0.72413793 0.92307692]
mean value: 0.8516788847570094
key: test_precision
value: [0. 0.25 0.25 0.66666667 0.6 0.
1. 1. 0.5 1. ]
mean value: 0.5266666666666666
key: train_precision
value: [0.91304348 1. 1. 1. 0.74074074 1.
1. 1. 0.56756757 1. ]
mean value: 0.9221351786569176
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 0.5 1. 0.5 ]
mean value: 0.5666666666666667
key: train_recall
value: [1. 1. 1. 0.95 1. 1.
0.47619048 0.28571429 1. 0.85714286]
mean value: 0.856904761904762
key: test_accuracy
value: [0.4 0.2 0.2 0.6 0.6 0.4 1. 0.75 0.5 0.75]
mean value: 0.54
key: train_accuracy
value: [0.95121951 1. 1. 0.97560976 0.82926829 1.
0.73809524 0.64285714 0.61904762 0.92857143]
mean value: 0.8684668989547039
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.58333333 0.5 0.5
1. 0.75 0.5 0.75 ]
mean value: 0.5416666666666666
key: train_roc_auc
value: [0.95 1. 1. 0.975 0.83333333 1.
0.73809524 0.64285714 0.61904762 0.92857143]
mean value: 0.8686904761904761
key: test_jcc
value: [0. 0.2 0.2 0.5 0.6 0. 1. 0.5 0.5 0.5]
mean value: 0.4
key: train_jcc
value: [0.91304348 1. 1. 0.95 0.74074074 1.
0.47619048 0.28571429 0.56756757 0.85714286]
mean value: 0.7790399405616796
MCC on Blind test: 0.0
MCC on Training: 0.07
Running classifier: 24
Model_name: XGBoost
Model func: XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...
interaction_constraints=None, learning_rate=None,
max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan,
monotone_constraints=None, n_estimators=100,
n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None,
reg_lambda=None, scale_pos_weight=None,
subsample=None, tree_method=None,
use_label_encoder=False,
validate_parameters=None, verbosity=0))])
key: fit_time
value: [0.08621764 0.03232837 0.03493404 0.05668974 0.03353143 0.06770754
0.10060072 0.03396583 0.03277302 0.03329682]
mean value: 0.051204514503479
key: score_time
value: [0.01044512 0.01086426 0.01261115 0.00993538 0.01037407 0.01312995
0.01070309 0.01091051 0.01024461 0.01019049]
mean value: 0.010940861701965333
key: test_mcc
value: [ 0.61237244 -0.16666667 0. -0.66666667 0.66666667 0.40824829
0.57735027 0.57735027 0.57735027 0.57735027]
mean value: 0.31633551362514944
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.4 0.57142857 0.33333333 0.8 0.5
0.66666667 0.66666667 0.8 0.8 ]
mean value: 0.6204761904761904
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0.33333333 0.4 0.33333333 1. 1.
1. 1. 0.66666667 0.66666667]
mean value: 0.74
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.4 0.4 0.2 0.8 0.6 0.75 0.75 0.75 0.75]
mean value: 0.62
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.41666667 0.5 0.16666667 0.83333333 0.66666667
0.75 0.75 0.75 0.75 ]
mean value: 0.6333333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.25 0.4 0.2 0.66666667 0.33333333
0.5 0.5 0.66666667 0.66666667]
mean value: 0.4683333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.22
MCC on Training: 0.32
Extracting tts_split_name: 70_30
Total cols in each df:
CV df: 8
metaDF: 15
Adding column: Model_name
Total cols in bts df:
BT_df: 8
First proceeding to rowbind CV and BT dfs:
Final output should have: 23 columns
Combinig 2 using pd.concat by row ~ rowbind
Checking Dims of df to combine:
Dim of CV: (24, 8)
Dim of BT: (24, 8)
8
Number of Common columns: 8
These are: ['MCC', 'ROC_AUC', 'Accuracy', 'Precision', 'JCC', 'F1', 'source_data', 'Recall']
Concatenating dfs with different resampling methods [WF]:
Split type: 70_30
No. of dfs combining: 2
PASS: 2 /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
<00>?<3F> 0<>{%<25>0<>{%<25>Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
?E?<0F>?<3F>6l?<3F><> ?t<>E?<3F><>"?<3F><>"? ?<3F><>J?UU5?UU?;<3B>?O<>D?ى?O<>D?<3F>] ?^<5E>Z?<3F><>?<3F>] ?<3F>U?> є=<3D>E><3E><>b<0<>??<3F>\?!<21>?<3F><>l?<3F>><3E>>R<>k?<3F>\G?<3F>rx?<3F>.:=J<>'?]tQ?<3F>o<B6>?<3F>= >O#,?<3F><><84>>><3E><>=ӰQ?<00>?<3F><>T?<3F><>I?Ez<45>><3E>(?<3F>@<40><>>?@??@?<3F><>?<3F><>?<3F><>?<3F><>?]x ?<3F><>B?L<>(?<06>;?<06><>><3E><>"?<3F>D-?0<>=?<3F>9&?{<7B>:?H<>7?<3F><>L?iE?<3F><>i?<3F>#0?]6?:?Ֆ+?<3F><>?<3F>yh?5i?T<>P?<3F>;7?<3F>[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
dfs successfully combined
nrows in combined_df_wf: 48
ncols in combined_df_wf: 8
PASS: proceeding to merge metadata with CV and BT dfs
Adding column: Model_name
=========================================================
SUCCESS: Ran multiple classifiers
=======================================================
==============================================================
Running several classification models (n): 24
List of models:
('AdaBoost Classifier', AdaBoostClassifier(random_state=42))
('Bagging Classifier', BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3))
('Decision Tree', DecisionTreeClassifier(random_state=42))
('Extra Tree', ExtraTreeClassifier(random_state=42))
('Extra Trees', ExtraTreesClassifier(random_state=42))
('Gradient Boosting', GradientBoostingClassifier(random_state=42))
('Gaussian NB', GaussianNB())
('Gaussian Process', GaussianProcessClassifier(random_state=42))
('K-Nearest Neighbors', KNeighborsClassifier())
('LDA', LinearDiscriminantAnalysis())
('Logistic Regression', LogisticRegression(random_state=42))
('Logistic RegressionCV', LogisticRegressionCV(cv=3, random_state=42))
('MLP', MLPClassifier(max_iter=500, random_state=42))
('Multinomial', MultinomialNB())
('Naive Bayes', BernoulliNB())
('Passive Aggresive', PassiveAggressiveClassifier(n_jobs=12, random_state=42))
('QDA', QuadraticDiscriminantAnalysis())
('Random Forest', RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42))
('Random Forest2', RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42))
('Ridge Classifier', RidgeClassifier(random_state=42))
('Ridge ClassifierCV', RidgeClassifierCV(cv=3))
('SVC', SVC(random_state=42))
('Stochastic GDescent', SGDClassifier(n_jobs=12, random_state=42))
('XGBoost', XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0))
================================================================
Running classifier: 1
Model_name: AdaBoost Classifier
Model func: AdaBoostClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', AdaBoostClassifier(random_state=42))])
key: fit_time
value: [0.07132602 0.06682777 0.06677747 0.06710386 0.06674194 0.06700015
0.06825066 0.06934452 0.06717873 0.06770229]
mean value: 0.0678253412246704
key: score_time
value: [0.01529694 0.01437569 0.0144577 0.01442981 0.01447797 0.01481962
0.01443458 0.01433897 0.0144999 0.01434636]
mean value: 0.01454775333404541
key: test_mcc
value: [-0.16666667 -0.16666667 0. 0.16666667 0.16666667 0.
0.57735027 1. 0. 0.57735027]
mean value: 0.21547005383792514
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.4 0.57142857 0.66666667 0.66666667 0.
0.66666667 1. 0.66666667 0.8 ]
mean value: 0.5838095238095238
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0.33333333 0.4 0.66666667 0.66666667 0.
1. 1. 0.5 0.66666667]
mean value: 0.5566666666666668
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.4 0.6 0.6 0.4 0.75 1. 0.5 0.75]
mean value: 0.58
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.41666667 0.5 0.58333333 0.58333333 0.5
0.75 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.25 0.4 0.5 0.5 0.
0.5 1. 0.5 0.66666667]
mean value: 0.45666666666666667
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.03
MCC on Training: 0.22
Running classifier: 2
Model_name: Bagging Classifier
Model func: BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True,
random_state=42, verbose=3))])
key: fit_time
value: [0.12906003 0.10704207 0.12686491 0.12080836 0.10430932 0.10011482
0.12024331 0.12664056 0.12828541 0.11073399]
mean value: 0.1174102783203125
key: score_time
value: [0.03597808 0.05087709 0.05140519 0.05607057 0.03567457 0.07094002
0.04233408 0.07256484 0.06659627 0.04438996]
mean value: 0.05268306732177734
key: test_mcc
value: [ 0.16666667 -0.16666667 0. -0.66666667 1. 0.40824829
1. 0.57735027 0.57735027 0.57735027]
mean value: 0.3473632431366074
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0.4 0.57142857 0.33333333 1. 0.5
1. 0.66666667 0.8 0.8 ]
mean value: 0.6571428571428571
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0.33333333 0.4 0.33333333 1. 1.
1. 1. 0.66666667 0.66666667]
mean value: 0.6900000000000001
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.2s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.6s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[0.5 0.5 1. 0.33333333 1. 0.33333333
1. 0.5 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.4 0.4 0.2 1. 0.6 1. 0.75 0.75 0.75]
mean value: 0.645
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.41666667 0.5 0.16666667 1. 0.66666667
1. 0.75 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0.25 0.4 0.2 1. 0.33333333
1. 0.5 0.66666667 0.66666667]
mean value: 0.535
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.35
Running classifier: 3
Model_name: Decision Tree
Model func: DecisionTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', DecisionTreeClassifier(random_state=42))])
key: fit_time
value: [0.00995827 0.01006293 0.00977159 0.00960875 0.00932837 0.01003432
0.01015401 0.01002192 0.01014709 0.01005244]
mean value: 0.009913969039916991
key: score_time
value: [0.00937915 0.0091207 0.00905037 0.00908828 0.00868917 0.00928426
0.00929546 0.0092063 0.00931859 0.00913453]
mean value: 0.0091566801071167
key: test_mcc
value: [ 0.61237244 0.61237244 0. -0.66666667 -0.40824829 0.40824829
0. 0. 0.57735027 0.57735027]
mean value: 0.17127787431041744
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.57142857 0.33333333 0.57142857 0.5
0.5 0.5 0.8 0.8 ]
mean value: 0.590952380952381
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.4 0.33333333 0.5 1.
0.5 0.5 0.66666667 0.66666667]
mean value: 0.6566666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.4 0.2 0.4 0.6 0.5 0.5 0.75 0.75]
mean value: 0.5700000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.5 0.16666667 0.33333333 0.66666667
0.5 0.5 0.75 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.4 0.2 0.4 0.33333333
0.33333333 0.33333333 0.66666667 0.66666667]
mean value: 0.4333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.21
MCC on Training: 0.17
Running classifier: 4
Model_name: Extra Tree
Model func: ExtraTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreeClassifier(random_state=42))])
key: fit_time
value: [0.00974703 0.00838304 0.00848198 0.00882292 0.00814939 0.00913811
0.00892091 0.00848198 0.008219 0.00814247]
mean value: 0.008648681640625
key: score_time
value: [0.00833654 0.00855279 0.00859737 0.00846529 0.00859642 0.00892782
0.00907707 0.00840664 0.00827885 0.00861287]
mean value: 0.008585166931152344
key: test_mcc
value: [ 0.61237244 -0.40824829 0.40824829 -0.40824829 0.61237244 0.66666667
1. 0.57735027 0. 0. ]
mean value: 0.30605135167840186
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0. 0.66666667 0.57142857 0.85714286 0.8
1. 0.8 0.5 0.5 ]
mean value: 0.6361904761904762
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0. 0.5 0.5 0.75 1.
1. 0.66666667 0.5 0.5 ]
mean value: 0.6416666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.66666667
1. 1. 0.5 0.5 ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.4 0.6 0.4 0.8 0.8 1. 0.75 0.5 0.5 ]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.33333333 0.66666667 0.33333333 0.75 0.83333333
1. 0.75 0.5 0.5 ]
mean value: 0.6416666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0. 0.5 0.4 0.75 0.66666667
1. 0.66666667 0.33333333 0.33333333]
mean value: 0.5149999999999999
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.14
MCC on Training: 0.31
Running classifier: 5
Model_name: Extra Trees
Model func: ExtraTreesClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreesClassifier(random_state=42))])
key: fit_time
value: [0.076051 0.08050394 0.07719064 0.08136129 0.07856488 0.08007026
0.08113217 0.08063841 0.08339477 0.08117771]
mean value: 0.08000850677490234
key: score_time
value: [0.01741648 0.01722956 0.01732183 0.01721096 0.01760364 0.01814914
0.01826596 0.01826811 0.01760626 0.01790762]
mean value: 0.017697954177856447
key: test_mcc
value: [ 0.16666667 -0.66666667 0.66666667 -0.40824829 0.61237244 0.40824829
0.57735027 0.57735027 0.57735027 -0.57735027]
mean value: 0.19337396407417132
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.57142857 0.85714286 0.5
0.66666667 0.66666667 0.8 0.4 ]
mean value: 0.5761904761904761
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.5 0.75 1.
1. 1. 0.66666667 0.33333333]
mean value: 0.6416666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 0.5 1. 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.8 0.4 0.8 0.6 0.75 0.75 0.75 0.25]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.83333333 0.33333333 0.75 0.66666667
0.75 0.75 0.75 0.25 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.4 0.75 0.33333333
0.5 0.5 0.66666667 0.25 ]
mean value: 0.43999999999999995
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.15
MCC on Training: 0.19
Running classifier: 6
Model_name: Gradient Boosting
Model func: GradientBoostingClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GradientBoostingClassifier(random_state=42))])
key: fit_time
value: [0.13448787 0.12742686 0.11794376 0.1357913 0.12634826 0.11400104
0.12737584 0.12645459 0.13348007 0.11710906]
mean value: 0.12604186534881592
key: score_time
value: [0.00984979 0.00985265 0.01020741 0.0097754 0.00925779 0.00990605
0.0094161 0.00989556 0.00962567 0.00884724]
mean value: 0.00966336727142334
key: test_mcc
value: [0.61237244 0.61237244 0. 0.16666667 0.16666667 0.40824829
0.57735027 0. 0.57735027 0.57735027]
mean value: 0.36983773027576633
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.57142857 0.66666667 0.66666667 0.5
0.66666667 0.5 0.8 0.8 ]
mean value: 0.6504761904761904
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.4 0.66666667 0.66666667 1.
1. 0.5 0.66666667 0.66666667]
mean value: 0.7566666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.4 0.6 0.6 0.6 0.75 0.5 0.75 0.75]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.5 0.58333333 0.58333333 0.66666667
0.75 0.5 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.4 0.5 0.5 0.33333333
0.5 0.33333333 0.66666667 0.66666667]
mean value: 0.49000000000000005
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.48
MCC on Training: 0.37
Running classifier: 7
Model_name: Gaussian NB
Model func: GaussianNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianNB())])
key: fit_time
value: [0.00802517 0.00784039 0.00806189 0.00785351 0.00780725 0.00784564
0.00790715 0.00786304 0.00797224 0.00807905]
mean value: 0.00792553424835205
key: score_time
value: [0.00857687 0.00819349 0.00826335 0.00834155 0.00818014 0.00822473
0.00831079 0.00825834 0.00824285 0.00824022]
mean value: 0.008283233642578125
key: test_mcc
value: [-0.16666667 0. 0. 0.61237244 0. 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.34313043286826167
key: train_mcc
value: [0.57570364 0.698212 0.63496528 0.49692935 0.59982886 0.63994524
0.56652882 0.52704628 0.54659439 0.60609153]
mean value: 0.5891845382894122
key: test_fscore
value: [0.4 0.57142857 0.57142857 0.85714286 0.75 0.5
1. 1. 0.66666667 0.8 ]
mean value: 0.7116666666666667
key: train_fscore
value: [0.80851064 0.85714286 0.83333333 0.76595745 0.80851064 0.82608696
0.8 0.78431373 0.79166667 0.81632653]
mean value: 0.8091848793171292
key: test_precision
value: [0.33333333 0.4 0.4 0.75 0.6 1.
1. 1. 0.5 0.66666667]
mean value: 0.665
key: train_precision
value: [0.73076923 0.75 0.74074074 0.66666667 0.7037037 0.73076923
0.68965517 0.66666667 0.7037037 0.71428571]
mean value: 0.7096960829719451
key: test_recall
value: [0.5 1. 1. 1. 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.8833333333333332
key: train_recall
value: [0.9047619 1. 0.95238095 0.9 0.95 0.95
0.95238095 0.95238095 0.9047619 0.95238095]
mean value: 0.9419047619047619
key: test_accuracy
value: [0.4 0.4 0.4 0.8 0.6 0.6 1. 1. 0.5 0.75]
mean value: 0.645
key: train_accuracy
value: [0.7804878 0.82926829 0.80487805 0.73170732 0.7804878 0.80487805
0.76190476 0.73809524 0.76190476 0.78571429]
mean value: 0.7779326364692218
key: test_roc_auc
value: [0.41666667 0.5 0.5 0.75 0.5 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [0.77738095 0.825 0.80119048 0.73571429 0.78452381 0.80833333
0.76190476 0.73809524 0.76190476 0.78571429]
mean value: 0.7779761904761904
key: test_jcc
value: [0.25 0.4 0.4 0.75 0.6 0.33333333
1. 1. 0.5 0.66666667]
mean value: 0.5900000000000001
key: train_jcc
value: [0.67857143 0.75 0.71428571 0.62068966 0.67857143 0.7037037
0.66666667 0.64516129 0.65517241 0.68965517]
mean value: 0.6802477473500833
MCC on Blind test: -0.03
MCC on Training: 0.34
Running classifier: 8
Model_name: Gaussian Process
Model func: GaussianProcessClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianProcessClassifier(random_state=42))])
key: fit_time
value: [0.00984263 0.00996685 0.01091576 0.01114798 0.00994277 0.00994539
0.00990534 0.01119637 0.01126266 0.01121879]
mean value: 0.010534453392028808
key: score_time
value: [0.00853729 0.00851989 0.00944638 0.00902963 0.00861883 0.00865293
0.00894928 0.00960135 0.00959802 0.00960469]
mean value: 0.009055829048156739
key: test_mcc
value: [ 0.16666667 -0.66666667 0.66666667 -0.40824829 1. 0.40824829
0.57735027 1. -0.57735027 -0.57735027]
mean value: 0.15893163974770408
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.57142857 1. 0.5
0.66666667 1. 0.4 0.4 ]
mean value: 0.5838095238095239
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.5 1. 1.
1. 1. 0.33333333 0.33333333]
mean value: 0.6333333333333332
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.8 0.4 1. 0.6 0.75 1. 0.25 0.25]
mean value: 0.585
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.83333333 0.33333333 1. 0.66666667
0.75 1. 0.25 0.25 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.4 1. 0.33333333
0.5 1. 0.25 0.25 ]
mean value: 0.4733333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.16
Running classifier: 9
Model_name: K-Nearest Neighbors
Model func: KNeighborsClassifier()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', KNeighborsClassifier())])
key: fit_time
value: [0.00772309 0.00805616 0.00851703 0.00791001 0.00859571 0.00777578
0.00866675 0.00818062 0.00799799 0.00829411]
mean value: 0.008171725273132324
key: score_time
value: [0.01391387 0.00988483 0.00986409 0.00877953 0.00973701 0.00899768
0.00963449 0.00877929 0.0090239 0.009588 ]
mean value: 0.009820270538330077
key: test_mcc
value: [ 0.16666667 -0.16666667 0.40824829 -0.40824829 0.16666667 -0.61237244
0. 0.57735027 0. 0.57735027]
mean value: 0.07089947693501238
key: train_mcc
value: [0.36718832 0.56527676 0.56527676 0.56086079 0.56086079 0.52420964
0.43656413 0.43052839 0.4472136 0.47673129]
mean value: 0.49347104597079217
key: test_fscore
value: [0.5 0.4 0.66666667 0.57142857 0.66666667 0.
0.5 0.8 0.66666667 0.8 ]
mean value: 0.5571428571428572
key: train_fscore
value: [0.71111111 0.8 0.8 0.76923077 0.76923077 0.77272727
0.73913043 0.72727273 0.75 0.74418605]
mean value: 0.7582889130866886
key: test_precision
value: [0.5 0.33333333 0.5 0.5 0.66666667 0.
0.5 0.66666667 0.5 0.66666667]
mean value: 0.4833333333333333
key: train_precision
value: [0.66666667 0.75 0.75 0.78947368 0.78947368 0.70833333
0.68 0.69565217 0.66666667 0.72727273]
mean value: 0.722353893627349
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [0.76190476 0.85714286 0.85714286 0.75 0.75 0.85
0.80952381 0.76190476 0.85714286 0.76190476]
mean value: 0.8016666666666665
key: test_accuracy
value: [0.6 0.4 0.6 0.4 0.6 0.2 0.5 0.75 0.5 0.75]
mean value: 0.53
key: train_accuracy
value: [0.68292683 0.7804878 0.7804878 0.7804878 0.7804878 0.75609756
0.71428571 0.71428571 0.71428571 0.73809524]
mean value: 0.7441927990708479
key: test_roc_auc
value: [0.58333333 0.41666667 0.66666667 0.33333333 0.58333333 0.25
0.5 0.75 0.5 0.75 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.68095238 0.77857143 0.77857143 0.7797619 0.7797619 0.75833333
0.71428571 0.71428571 0.71428571 0.73809524]
mean value: 0.7436904761904762
key: test_jcc
value: [0.33333333 0.25 0.5 0.4 0.5 0.
0.33333333 0.66666667 0.5 0.66666667]
mean value: 0.41500000000000004
key: train_jcc
value: [0.55172414 0.66666667 0.66666667 0.625 0.625 0.62962963
0.5862069 0.57142857 0.6 0.59259259]
mean value: 0.6114915161466885
MCC on Blind test: 0.21
MCC on Training: 0.07
Running classifier: 10
Model_name: LDA
Model func: LinearDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LinearDiscriminantAnalysis())])
key: fit_time
value: [0.01078725 0.01337886 0.01345515 0.01345873 0.01352358 0.0134542
0.01386166 0.01371312 0.01357365 0.01348424]
mean value: 0.01326904296875
key: score_time
value: [0.01115131 0.01128483 0.01133561 0.01127672 0.0112915 0.01131248
0.01135087 0.01136351 0.01129174 0.01131058]
mean value: 0.011296916007995605
key: test_mcc
value: [ 0.16666667 -0.16666667 -0.61237244 -0.40824829 0.40824829 -0.16666667
-0.57735027 1. 1. 0.57735027]
mean value: 0.12209608976375388
key: train_mcc
value: [0.8547619 0.75714286 0.95227002 0.90238095 0.90238095 0.85441771
0.9047619 0.9047619 0.76277007 0.9047619 ]
mean value: 0.8700410175391831
key: test_fscore
value: [0.5 0.4 0.33333333 0.57142857 0.5 0.4
0.4 1. 1. 0.66666667]
mean value: 0.5771428571428572
key: train_fscore
value: [0.92682927 0.87804878 0.97674419 0.95 0.95 0.92307692
0.95238095 0.95238095 0.87804878 0.95238095]
mean value: 0.9339890795534584
key: test_precision
value: [0.5 0.33333333 0.25 0.5 1. 0.5
0.33333333 1. 1. 1. ]
mean value: 0.6416666666666666
key: train_precision
value: [0.95 0.9 0.95454545 0.95 0.95 0.94736842
0.95238095 0.95238095 0.9 0.95238095]
mean value: 0.9409056732740944
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0.33333333 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.5833333333333333
key: train_recall
value: [0.9047619 0.85714286 1. 0.95 0.95 0.9
0.95238095 0.95238095 0.85714286 0.95238095]
mean value: 0.9276190476190477
key: test_accuracy
value: [0.6 0.4 0.2 0.4 0.6 0.4 0.25 1. 1. 0.75]
mean value: 0.5599999999999999
key: train_accuracy
value: [0.92682927 0.87804878 0.97560976 0.95121951 0.95121951 0.92682927
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347851335656214
key: test_roc_auc
value: [0.58333333 0.41666667 0.25 0.33333333 0.66666667 0.41666667
0.25 1. 1. 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [0.92738095 0.87857143 0.975 0.95119048 0.95119048 0.92619048
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347619047619047
key: test_jcc
value: [0.33333333 0.25 0.2 0.4 0.33333333 0.25
0.25 1. 1. 0.5 ]
mean value: 0.45166666666666666
key: train_jcc
value: [0.86363636 0.7826087 0.95454545 0.9047619 0.9047619 0.85714286
0.90909091 0.90909091 0.7826087 0.90909091]
mean value: 0.8777338603425558
MCC on Blind test: -0.3
MCC on Training: 0.12
Running classifier: 11
Model_name: Logistic Regression
Model func: LogisticRegression(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegression(random_state=42))])
key: fit_time
value: [0.02276278 0.01777101 0.01533675 0.01758695 0.01738787 0.01787591
0.01559329 0.01682639 0.01681209 0.01718521]
mean value: 0.01751382350921631
key: score_time
value: [0.01165128 0.00993705 0.00950909 0.0094161 0.00942922 0.00944781
0.00945854 0.00943589 0.00949621 0.00946188]
mean value: 0.009724307060241699
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 -0.40824829 0.61237244 -0.61237244
1. 1. 0. 1. ]
mean value: 0.09587585476806848
key: train_mcc
value: [0.85441771 0.95238095 1. 0.90238095 0.90238095 0.90649828
0.85811633 0.85811633 0.85811633 0.9047619 ]
mean value: 0.8997169740060625
key: test_fscore
value: [0. 0.33333333 0.33333333 0.57142857 0.85714286 0.
1. 1. 0.5 1. ]
mean value: 0.5595238095238095
key: train_fscore
value: [0.93023256 0.97560976 1. 0.95 0.95 0.94736842
0.92682927 0.92682927 0.92682927 0.95238095]
mean value: 0.9486079492548729
key: test_precision
value: [0. 0.25 0.25 0.5 0.75 0. 1. 1. 0.5 1. ]
mean value: 0.525
key: train_precision
value: [0.90909091 1. 1. 0.95 0.95 1.
0.95 0.95 0.95 0.95238095]
mean value: 0.9611471861471861
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_recall
value: [0.95238095 0.95238095 1. 0.95 0.95 0.9
0.9047619 0.9047619 0.9047619 0.95238095]
mean value: 0.9371428571428572
key: test_accuracy
value: [0.4 0.2 0.2 0.4 0.8 0.2 1. 1. 0.5 1. ]
mean value: 0.5700000000000001
key: train_accuracy
value: [0.92682927 0.97560976 1. 0.95121951 0.95121951 0.95121951
0.92857143 0.92857143 0.92857143 0.95238095]
mean value: 0.9494192799070849
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.33333333 0.75 0.25
1. 1. 0.5 1. ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [0.92619048 0.97619048 1. 0.95119048 0.95119048 0.95
0.92857143 0.92857143 0.92857143 0.95238095]
mean value: 0.9492857142857142
key: test_jcc
value: [0. 0.2 0.2 0.4 0.75 0.
1. 1. 0.33333333 1. ]
mean value: 0.4883333333333333
key: train_jcc
value: [0.86956522 0.95238095 1. 0.9047619 0.9047619 0.9
0.86363636 0.86363636 0.86363636 0.90909091]
mean value: 0.9031469979296066
MCC on Blind test: 0.03
MCC on Training: 0.1
Running classifier: 12
Model_name: Logistic RegressionCV
Model func: LogisticRegressionCV(cv=3, random_state=42)
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegressionCV(cv=3, random_state=42))])
key: fit_time
value: [0.14756513 0.15518308 0.14987803 0.15751052 0.1684587 0.1498332
0.16689873 0.1696198 0.16432261 0.17528272]
mean value: 0.16045525074005126
key: score_time
value: [0.00851631 0.00870752 0.00872874 0.00852203 0.00867891 0.00866747
0.00855327 0.00857377 0.00856733 0.00858259]
mean value: 0.008609795570373535
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 -0.40824829 0.16666667 0.
1. 1. 0. 0. ]
mean value: 0.012542521434735132
key: train_mcc
value: [0.41487884 1. 0.7098505 1. 1. 0.95227002
0.85811633 1. 1. 1. ]
mean value: 0.8935115692085429
key: test_fscore
value: [0. 0.33333333 0.33333333 0.57142857 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4904761904761905
key: train_fscore
value: [0.72727273 1. 0.86363636 1. 1. 0.97435897
0.92682927 1. 1. 1. ]
mean value: 0.9492097333560748
key: test_precision
value: [0. 0.25 0.25 0.5 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4666666666666666
key: train_precision
value: [0.69565217 1. 0.82608696 1. 1. 1.
0.95 1. 1. 1. ]
mean value: 0.9471739130434782
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.5333333333333333
key: train_recall
value: [0.76190476 1. 0.9047619 1. 1. 0.95
0.9047619 1. 1. 1. ]
mean value: 0.9521428571428571
key: test_accuracy
value: [0.4 0.2 0.2 0.4 0.6 0.4 1. 1. 0.5 0.5]
mean value: 0.52
key: train_accuracy
value: [0.70731707 1. 0.85365854 1. 1. 0.97560976
0.92857143 1. 1. 1. ]
mean value: 0.9465156794425088
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.33333333 0.58333333 0.5
1. 1. 0.5 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [0.70595238 1. 0.85238095 1. 1. 0.975
0.92857143 1. 1. 1. ]
mean value: 0.9461904761904762
key: test_jcc
value: [0. 0.2 0.2 0.4 0.5 0.
1. 1. 0.33333333 0.33333333]
mean value: 0.39666666666666667
key: train_jcc
value: [0.57142857 1. 0.76 1. 1. 0.95
0.86363636 1. 1. 1. ]
mean value: 0.9145064935064935
MCC on Blind test: -0.05
MCC on Training: 0.01
Running classifier: 13
Model_name: MLP
Model func: MLPClassifier(max_iter=500, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MLPClassifier(max_iter=500, random_state=42))])
key: fit_time
value: [0.26154828 0.32903314 0.21032548 0.23672295 0.2415185 0.25381923
0.26724911 0.24981642 0.23853779 0.35887623]
mean value: 0.2647447109222412
key: score_time
value: [0.01267409 0.01199841 0.01201987 0.01393771 0.01174808 0.01212859
0.01208258 0.01208258 0.01205397 0.01210666]
mean value: 0.012283253669738769
key: test_mcc
value: [ 0. -0.61237244 -0.16666667 -0.40824829 0.16666667 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.19649778334938311
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.33333333 0.4 0.57142857 0.66666667 0.5
1. 1. 0.5 0.8 ]
mean value: 0.5771428571428572
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.25 0.33333333 0.5 0.66666667 1.
1. 1. 0.5 0.66666667]
mean value: 0.5916666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.33333333
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.4 0.4 0.6 0.6 1. 1. 0.5 0.75]
mean value: 0.6050000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.5 0.25 0.41666667 0.33333333 0.58333333 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.2 0.25 0.4 0.5 0.33333333
1. 1. 0.33333333 0.66666667]
mean value: 0.4683333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.2
Running classifier: 14
Model_name: Multinomial
Model func: MultinomialNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MultinomialNB())])
key: fit_time
value: [0.01118302 0.01106453 0.00836563 0.00830483 0.00809264 0.00797749
0.00792384 0.00803685 0.00835824 0.00805259]
mean value: 0.008735966682434083
key: score_time
value: [0.01111627 0.01106596 0.00859427 0.00837588 0.00841665 0.00832319
0.00818777 0.00810027 0.00839496 0.00814033]
mean value: 0.00887155532836914
key: test_mcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[-0.40824829 0. -0.61237244 -0.40824829 0.16666667 0.
1. 0.57735027 0.57735027 0. ]
mean value: 0.08924981884223976
key: train_mcc
value: [0.36515617 0.31666667 0.46623254 0.46300848 0.46300848 0.41428571
0.43052839 0.38138504 0.42857143 0.43052839]
mean value: 0.415937128657245
key: test_fscore
value: [0. 0.57142857 0.33333333 0.57142857 0.66666667 0.
1. 0.8 0.8 0.5 ]
mean value: 0.5242857142857142
key: train_fscore
value: [0.69767442 0.66666667 0.75555556 0.71794872 0.71794872 0.7
0.72727273 0.69767442 0.71428571 0.72727273]
mean value: 0.712229966416013
key: test_precision
value: [0. 0.4 0.25 0.5 0.66666667 0.
1. 0.66666667 0.66666667 0.5 ]
mean value: 0.46499999999999997
key: train_precision
value: [0.68181818 0.66666667 0.70833333 0.73684211 0.73684211 0.7
0.69565217 0.68181818 0.71428571 0.69565217]
mean value: 0.701791063627448
key: test_recall
value: [0. 1. 0.5 0.66666667 0.66666667 0.
1. 1. 1. 0.5 ]
mean value: 0.6333333333333333
key: train_recall
value: [0.71428571 0.66666667 0.80952381 0.7 0.7 0.7
0.76190476 0.71428571 0.71428571 0.76190476]
mean value: 0.7242857142857143
key: test_accuracy
value: [0.4 0.4 0.2 0.4 0.6 0.4 1. 0.75 0.75 0.5 ]
mean value: 0.54
key: train_accuracy
value: [0.68292683 0.65853659 0.73170732 0.73170732 0.73170732 0.70731707
0.71428571 0.69047619 0.71428571 0.71428571]
mean value: 0.7077235772357724
key: test_roc_auc
value: [0.33333333 0.5 0.25 0.33333333 0.58333333 0.5
1. 0.75 0.75 0.5 ]
mean value: 0.55
key: train_roc_auc
value: [0.68214286 0.65833333 0.7297619 0.73095238 0.73095238 0.70714286
0.71428571 0.69047619 0.71428571 0.71428571]
mean value: 0.7072619047619048
key: test_jcc
value: [0. 0.4 0.2 0.4 0.5 0.
1. 0.66666667 0.66666667 0.33333333]
mean value: 0.41666666666666663
key: train_jcc
value: [0.53571429 0.5 0.60714286 0.56 0.56 0.53846154
0.57142857 0.53571429 0.55555556 0.57142857]
mean value: 0.5535445665445665
MCC on Blind test: 0.23
MCC on Training: 0.09
Running classifier: 15
Model_name: Naive Bayes
Model func: BernoulliNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', BernoulliNB())])
key: fit_time
value: [0.00921559 0.00892997 0.00834703 0.00904179 0.00921392 0.00909472
0.00917387 0.00914264 0.00951838 0.00931478]
mean value: 0.009099268913269043
key: score_time
value: [0.00903344 0.00910711 0.00899053 0.00905228 0.00956821 0.00909376
0.00895715 0.00923181 0.00912786 0.0089848 ]
mean value: 0.009114694595336915
key: test_mcc
value: [ 0.61237244 -0.16666667 -0.61237244 1. -0.61237244 0.40824829
0.57735027 0. 0.57735027 0.57735027]
mean value: 0.2361259995670279
key: train_mcc
value: [0.65952381 0.78072006 0.78072006 0.698212 0.65915306 0.81975606
0.67357531 0.78446454 0.81322028 0.78446454]
mean value: 0.7453809730969173
key: test_fscore
value: [0.66666667 0.4 0.33333333 1. 0. 0.5
0.66666667 0. 0.8 0.66666667]
mean value: 0.5033333333333333
key: train_fscore
value: [0.82926829 0.86486486 0.86486486 0.78787879 0.75 0.88888889
0.82051282 0.86486486 0.9 0.86486486]
mean value: 0.8436008249422884
key: test_precision
value: [1. 0.33333333 0.25 1. 0. 1.
1. 0. 0.66666667 1. ]
mean value: 0.625
key: train_precision
value: [0.85 1. 1. 1. 1. 1.
0.88888889 1. 0.94736842 1. ]
mean value: 0.9686257309941521
key: test_recall
value: [0.5 0.5 0.5 1. 0. 0.33333333
0.5 0. 1. 0.5 ]
mean value: 0.4833333333333333
key: train_recall
value: [0.80952381 0.76190476 0.76190476 0.65 0.6 0.8
0.76190476 0.76190476 0.85714286 0.76190476]
mean value: 0.7526190476190475
key: test_accuracy
value: [0.8 0.4 0.2 1. 0.2 0.6 0.75 0.5 0.75 0.75]
mean value: 0.595
key: train_accuracy
value: [0.82926829 0.87804878 0.87804878 0.82926829 0.80487805 0.90243902
0.83333333 0.88095238 0.9047619 0.88095238]
mean value: 0.8621951219512196
key: test_roc_auc
value: [0.75 0.41666667 0.25 1. 0.25 0.66666667
0.75 0.5 0.75 0.75 ]
mean value: 0.6083333333333333
key: train_roc_auc
value: [0.8297619 0.88095238 0.88095238 0.825 0.8 0.9
0.83333333 0.88095238 0.9047619 0.88095238]
mean value: 0.8616666666666667
key: test_jcc
value: [0.5 0.25 0.2 1. 0. 0.33333333
0.5 0. 0.66666667 0.5 ]
mean value: 0.39499999999999996
key: train_jcc
value: [0.70833333 0.76190476 0.76190476 0.65 0.6 0.8
0.69565217 0.76190476 0.81818182 0.76190476]
mean value: 0.7319786373047242
MCC on Blind test: -0.07
MCC on Training: 0.24
Running classifier: 16
Model_name: Passive Aggresive
Model func: PassiveAggressiveClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
PassiveAggressiveClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00911546 0.00983477 0.00927544 0.00967193 0.00957656 0.00978923
0.00937676 0.00916934 0.00889277 0.00861812]
mean value: 0.009332036972045899
key: score_time
value: [0.00904799 0.00918436 0.00818276 0.0091207 0.00896502 0.0089519
0.00935125 0.00835657 0.00825596 0.00836968]
mean value: 0.008778619766235351
key: test_mcc
value: [-0.66666667 -0.16666667 -0.61237244 -0.40824829 0.16666667 0.
1. 1. 0. 1. ]
mean value: 0.13127126071736755
key: train_mcc
value: [0.77831178 0.90692382 1. 0.74124932 0.95238095 0.95227002
0.80952381 0.81322028 0.8660254 0.78446454]
mean value: 0.860436992906499
key: test_fscore
value: [0. 0.4 0.33333333 0.57142857 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.5471428571428572
key: train_fscore
value: [0.89361702 0.95 1. 0.86956522 0.97560976 0.97435897
0.9047619 0.90909091 0.92307692 0.86486486]
mean value: 0.9264945570919038
key: test_precision
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
[0. 0.33333333 0.25 0.5 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.525
key: train_precision
value: [0.80769231 1. 1. 0.76923077 0.95238095 1.
0.9047619 0.86956522 1. 1. ]
mean value: 0.9303631151457239
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.5833333333333333
key: train_recall
value: [1. 0.9047619 1. 1. 1. 0.95
0.9047619 0.95238095 0.85714286 0.76190476]
mean value: 0.9330952380952382
key: test_accuracy
value: [0.2 0.4 0.2 0.4 0.6 0.4 1. 1. 0.5 1. ]
mean value: 0.5700000000000001
key: train_accuracy
value: [0.87804878 0.95121951 1. 0.85365854 0.97560976 0.97560976
0.9047619 0.9047619 0.92857143 0.88095238]
mean value: 0.9253193960511034
key: test_roc_auc
value: [0.16666667 0.41666667 0.25 0.33333333 0.58333333 0.5
1. 1. 0.5 1. ]
mean value: 0.575
key: train_roc_auc
value: [0.875 0.95238095 1. 0.85714286 0.97619048 0.975
0.9047619 0.9047619 0.92857143 0.88095238]
mean value: 0.9254761904761905
key: test_jcc
value: [0. 0.25 0.2 0.4 0.5 0.
1. 1. 0.33333333 1. ]
mean value: 0.4683333333333334
key: train_jcc
value: [0.80769231 0.9047619 1. 0.76923077 0.95238095 0.95
0.82608696 0.83333333 0.85714286 0.76190476]
mean value: 0.8662533842968625
MCC on Blind test: 0.05
MCC on Training: 0.13
Running classifier: 17
Model_name: QDA
Model func: QuadraticDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', QuadraticDiscriminantAnalysis())])
key: fit_time
value: [0.0092628 0.00901246 0.00931168 0.00920653 0.00939894 0.00953746
0.00833154 0.0083909 0.00859189 0.00833082]
mean value: 0.008937501907348632
key: score_time
value: [0.00874949 0.00910711 0.00965714 0.00918436 0.00914836 0.008636
0.00839758 0.00832081 0.00838661 0.00837803]
mean value: 0.00879654884338379
key: test_mcc
value: [-0.40824829 -0.40824829 0. 0.16666667 0.66666667 0.40824829
-0.57735027 1. -0.57735027 0. ]
mean value: 0.027038450449021856
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0. 0. 0.66666667 0.8 0.5
0.4 1. 0.4 0.5 ]
mean value: 0.42666666666666664
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0. 0. 0.66666667 1. 1.
0.33333333 1. 0.33333333 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0. 0. 0.66666667 0.66666667 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.41666666666666663
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.6 0.6 0.8 0.6 0.25 1. 0.25 0.5 ]
mean value: 0.54
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.33333333 0.5 0.58333333 0.83333333 0.66666667
0.25 1. 0.25 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0. 0. 0.5 0.66666667 0.33333333
0.25 1. 0.25 0.33333333]
mean value: 0.33333333333333337
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.07
MCC on Training: 0.03
Running classifier: 18
Model_name: Random Forest
Model func: RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(n_estimators=1000, n_jobs=12,
random_state=42))])
key: fit_time
value: [0.55358386 0.62967014 0.5608449 0.59313846 0.55381012 0.58645582
0.52134705 0.54654431 0.60201859 0.5584178 ]
mean value: 0.5705831050872803
key: score_time
value: [0.13278913 0.12353516 0.16475773 0.17462468 0.14252162 0.18101025
0.19316149 0.14391518 0.23816967 0.18874288]
mean value: 0.16832277774810792
key: test_mcc
value: [ 0.16666667 -1. 0.40824829 -0.40824829 1. 0.40824829
0.57735027 1. 0.57735027 -0.57735027]
mean value: 0.21522652263201553
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.66666667 0.57142857 1. 0.5
0.66666667 1. 0.8 0.4 ]
mean value: 0.6104761904761905
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.5 0.5 1. 1.
1. 1. 0.66666667 0.33333333]
mean value: 0.65
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.65
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0. 0.6 0.4 1. 0.6 0.75 1. 0.75 0.25]
mean value: 0.595
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0. 0.66666667 0.33333333 1. 0.66666667
0.75 1. 0.75 0.25 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.5 0.4 1. 0.33333333
0.5 1. 0.66666667 0.25 ]
mean value: 0.49833333333333335
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.22
Running classifier: 19
Model_name: Random Forest2
Model func: RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42)
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...age_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12,
oob_score=True, random_state=42))])
key: fit_time
value: [0.90452671 0.8731966 0.91812658 0.84927154 0.94887924 0.84053969
0.85708642 0.87757754 0.82549334 0.93582559]
mean value: 0.8830523252487182
key: score_time
value: [0.16090035 0.16618824 0.19430923 0.20362377 0.14965487 0.22289467
0.19717145 0.18432331 0.18372726 0.18409944]
mean value: 0.18468925952911378
key: test_mcc
value: [ 0.16666667 -1. 0.40824829 -0.40824829 0.61237244 0.40824829
1. 1. 0.57735027 0. ]
mean value: 0.276463766201595
key: train_mcc
value: [0.7565654 0.90692382 0.8047619 0.90238095 0.8547619 0.85441771
0.9047619 0.80952381 0.81322028 0.80952381]
mean value: 0.841684150259194
key: test_fscore
value: [0.5 0. 0.66666667 0.57142857 0.85714286 0.5
1. 1. 0.8 0.5 ]
mean value: 0.6395238095238095
key: train_fscore
value: [0.88372093 0.95 0.9047619 0.95 0.92682927 0.92307692
0.95238095 0.9047619 0.9 0.9047619 ]
mean value: 0.9200293788268832
key: test_precision
value: [0.5 0. 0.5 0.5 0.75 1.
1. 1. 0.66666667 0.5 ]
mean value: 0.6416666666666667
key: train_precision
value: [0.86363636 1. 0.9047619 0.95 0.9047619 0.94736842
0.95238095 0.9047619 0.94736842 0.9047619 ]
mean value: 0.9279801777170199
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.7
key: train_recall
value: [0.9047619 0.9047619 0.9047619 0.95 0.95 0.9
0.95238095 0.9047619 0.85714286 0.9047619 ]
mean value: 0.9133333333333334
key: test_accuracy
value: [0.6 0. 0.6 0.4 0.8 0.6 1. 1. 0.75 0.5 ]
mean value: 0.625
key: train_accuracy
value: [0.87804878 0.95121951 0.90243902 0.95121951 0.92682927 0.92682927
0.95238095 0.9047619 0.9047619 0.9047619 ]
mean value: 0.9203252032520325
key: test_roc_auc
value: [0.58333333 0. 0.66666667 0.33333333 0.75 0.66666667
1. 1. 0.75 0.5 ]
mean value: 0.625
key: train_roc_auc
value: [0.87738095 0.95238095 0.90238095 0.95119048 0.92738095 0.92619048
0.95238095 0.9047619 0.9047619 0.9047619 ]
mean value: 0.9203571428571428
key: test_jcc
value: [0.33333333 0. 0.5 0.4 0.75 0.33333333
1. 1. 0.66666667 0.33333333]
mean value: 0.5316666666666666
key: train_jcc
value: [0.79166667 0.9047619 0.82608696 0.9047619 0.86363636 0.85714286
0.90909091 0.82608696 0.81818182 0.82608696]
mean value: 0.8527503293807641
MCC on Blind test: -0.13
MCC on Training: 0.28
Running classifier: 20
Model_name: Ridge Classifier
Model func: RidgeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifier(random_state=42))])
key: fit_time
value: [0.01039004 0.00990462 0.00964117 0.00976992 0.00990582 0.00934601
0.01006198 0.01024485 0.01005363 0.01038742]
mean value: 0.009970545768737793
key: score_time
value: [0.00966334 0.00948763 0.00927234 0.0087626 0.00877118 0.00932288
0.00956345 0.00921845 0.00949717 0.00895643]
mean value: 0.009251546859741212
key: test_mcc
value: [-0.40824829 -0.16666667 -0.61237244 -0.66666667 0.61237244 0.
1. 1. 0. 1. ]
mean value: 0.17584183762028038
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.4 0.33333333 0.33333333 0.85714286 0.
1. 1. 0.5 1. ]
mean value: 0.5423809523809524
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.33333333 0.25 0.33333333 0.75 0.
1. 1. 0.5 1. ]
mean value: 0.5166666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.
1. 1. 0.5 1. ]
mean value: 0.5833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.2 0.2 0.8 0.4 1. 1. 0.5 1. ]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.41666667 0.25 0.16666667 0.75 0.5
1. 1. 0.5 1. ]
mean value: 0.5916666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.25 0.2 0.2 0.75 0.
1. 1. 0.33333333 1. ]
mean value: 0.47333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.31
MCC on Training: 0.18
Running classifier: 21
Model_name: Ridge ClassifierCV
Model func: RidgeClassifierCV(cv=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifierCV(cv=3))])
key: fit_time
value: [0.02538943 0.02745485 0.02640367 0.0266459 0.02600169 0.0269928
0.02637315 0.02653122 0.02626705 0.02588439]
mean value: 0.026394414901733398
key: score_time
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0.00916243 0.00952506 0.00921535 0.00920939 0.0092051 0.00893593
0.00936699 0.00993633 0.0092423 0.00926065]
mean value: 0.009305953979492188
key: test_mcc
value: [ 0. -0.16666667 -0.61237244 -0.66666667 0.61237244 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.21522652263201558
key: train_mcc
value: [1. 1. 0.8547619 1. 1. 1.
0.85811633 1. 1. 1. ]
mean value: 0.9712878235082938
key: test_fscore
value: [0. 0.4 0.33333333 0.33333333 0.85714286 0.5
1. 1. 0.5 0.66666667]
mean value: 0.5590476190476191
key: train_fscore
value: [1. 1. 0.92682927 1. 1. 1.
0.92682927 1. 1. 1. ]
mean value: 0.9853658536585366
key: test_precision
value: [0. 0.33333333 0.25 0.33333333 0.75 1.
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_precision
value: [1. 1. 0.95 1. 1. 1. 0.95 1. 1. 1. ]
mean value: 0.99
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.33333333
1. 1. 0.5 0.5 ]
mean value: 0.5666666666666667
key: train_recall
value: [1. 1. 0.9047619 1. 1. 1. 0.9047619
1. 1. 1. ]
mean value: 0.980952380952381
key: test_accuracy
value: [0.6 0.4 0.2 0.2 0.8 0.6 1. 1. 0.5 0.75]
mean value: 0.605
key: train_accuracy
value: [1. 1. 0.92682927 1. 1. 1.
0.92857143 1. 1. 1. ]
mean value: 0.9855400696864113
key: test_roc_auc
value: [0.5 0.41666667 0.25 0.16666667 0.75 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 0.92738095 1. 1. 1.
0.92857143 1. 1. 1. ]
mean value: 0.9855952380952381
key: test_jcc
value: [0. 0.25 0.2 0.2 0.75 0.33333333
1. 1. 0.33333333 0.5 ]
mean value: 0.45666666666666667
key: train_jcc
value: [1. 1. 0.86363636 1. 1. 1.
0.86363636 1. 1. 1. ]
mean value: 0.9727272727272727
MCC on Blind test: -0.31
MCC on Training: 0.22
Running classifier: 22
Model_name: SVC
Model func: SVC(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SVC(random_state=42))])
key: fit_time
value: [0.00931573 0.00952458 0.00878596 0.00907946 0.00951433 0.00869846
0.00847411 0.00910711 0.0096128 0.00942516]
mean value: 0.00915377140045166
key: score_time
value: [0.00917435 0.00869799 0.00853705 0.00877333 0.00908065 0.00860214
0.00900173 0.00927615 0.00915623 0.00883126]
mean value: 0.008913087844848632
key: test_mcc
value: [-0.40824829 -0.16666667 -0.16666667 -0.40824829 0.16666667 0.
1. 0.57735027 0. 0. ]
mean value: 0.059418702159523294
key: train_mcc
value: [0.65952381 0.8547619 0.75714286 0.7633652 0.65871309 0.85441771
0.76980036 0.62187434 0.71428571 0.71754731]
mean value: 0.7371432287703027
key: test_fscore
value: [0. 0.4 0.4 0.57142857 0.66666667 0.
1. 0.66666667 0.5 0.5 ]
mean value: 0.4704761904761904
key: train_fscore
value: [0.82926829 0.92682927 0.87804878 0.86486486 0.82051282 0.92307692
0.87179487 0.8 0.85714286 0.86363636]
mean value: 0.8635175042492115
key: test_precision
value: [0. 0.33333333 0.33333333 0.5 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [0.85 0.95 0.9 0.94117647 0.84210526 0.94736842
0.94444444 0.84210526 0.85714286 0.82608696]
mean value: 0.8900429676065696
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 0.5 0.5 0.5 ]
mean value: 0.4833333333333333
key: train_recall
value: [0.80952381 0.9047619 0.85714286 0.8 0.8 0.9
0.80952381 0.76190476 0.85714286 0.9047619 ]
mean value: 0.8404761904761904
key: test_accuracy
value: [0.4 0.4 0.4 0.4 0.6 0.4 1. 0.75 0.5 0.5 ]
mean value: 0.5349999999999999
key: train_accuracy
value: [0.82926829 0.92682927 0.87804878 0.87804878 0.82926829 0.92682927
0.88095238 0.80952381 0.85714286 0.85714286]
mean value: 0.8673054587688733
key: test_roc_auc
value: [0.33333333 0.41666667 0.41666667 0.33333333 0.58333333 0.5
1. 0.75 0.5 0.5 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.8297619 0.92738095 0.87857143 0.87619048 0.82857143 0.92619048
0.88095238 0.80952381 0.85714286 0.85714286]
mean value: 0.8671428571428572
key: test_jcc
value: [0. 0.25 0.25 0.4 0.5 0.
1. 0.5 0.33333333 0.33333333]
mean value: 0.3566666666666667
key: train_jcc
value: [0.70833333 0.86363636 0.7826087 0.76190476 0.69565217 0.85714286
0.77272727 0.66666667 0.75 0.76 ]
mean value: 0.7618672124976473
MCC on Blind test: 0.12
MCC on Training: 0.06
Running classifier: 23
Model_name: Stochastic GDescent
Model func: SGDClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SGDClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.008991 0.00889349 0.00859237 0.00896955 0.00868869 0.00950837
0.00857234 0.00952172 0.00874186 0.00952697]
mean value: 0.009000635147094727
key: score_time
value: [0.00860119 0.00874877 0.00874877 0.00896454 0.00894547 0.00921011
0.00875974 0.00933814 0.00897598 0.00920892]
mean value: 0.008950161933898925
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 0.16666667 0. 0.
1. 0.57735027 0. 0.57735027]
mean value: 0.0688374043190466
key: train_mcc
value: [0.90649828 1. 1. 0.95227002 0.70272837 1.
0.55901699 0.40824829 0.36760731 0.8660254 ]
mean value: 0.7762394663113877
key: test_fscore
value: [0. 0.33333333 0.33333333 0.66666667 0.75 0.
1. 0.66666667 0.66666667 0.66666667]
mean value: 0.5083333333333334
key: train_fscore
value: [0.95454545 1. 1. 0.97435897 0.85106383 1.
0.64516129 0.44444444 0.72413793 0.92307692]
mean value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead.
from pandas import MultiIndex, Int64Index
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:427: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_CV['source_data'] = 'CV'
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:454: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_BT['source_data'] = 'BT'
0.8516788847570094
key: test_precision
value: [0. 0.25 0.25 0.66666667 0.6 0.
1. 1. 0.5 1. ]
mean value: 0.5266666666666666
key: train_precision
value: [0.91304348 1. 1. 1. 0.74074074 1.
1. 1. 0.56756757 1. ]
mean value: 0.9221351786569176
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 0.5 1. 0.5 ]
mean value: 0.5666666666666667
key: train_recall
value: [1. 1. 1. 0.95 1. 1.
0.47619048 0.28571429 1. 0.85714286]
mean value: 0.856904761904762
key: test_accuracy
value: [0.4 0.2 0.2 0.6 0.6 0.4 1. 0.75 0.5 0.75]
mean value: 0.54
key: train_accuracy
value: [0.95121951 1. 1. 0.97560976 0.82926829 1.
0.73809524 0.64285714 0.61904762 0.92857143]
mean value: 0.8684668989547039
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.58333333 0.5 0.5
1. 0.75 0.5 0.75 ]
mean value: 0.5416666666666666
key: train_roc_auc
value: [0.95 1. 1. 0.975 0.83333333 1.
0.73809524 0.64285714 0.61904762 0.92857143]
mean value: 0.8686904761904761
key: test_jcc
value: [0. 0.2 0.2 0.5 0.6 0. 1. 0.5 0.5 0.5]
mean value: 0.4
key: train_jcc
value: [0.91304348 1. 1. 0.95 0.74074074 1.
0.47619048 0.28571429 0.56756757 0.85714286]
mean value: 0.7790399405616796
MCC on Blind test: 0.0
MCC on Training: 0.07
Running classifier: 24
Model_name: XGBoost
Model func: XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...
interaction_constraints=None, learning_rate=None,
max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan,
monotone_constraints=None, n_estimators=100,
n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None,
reg_lambda=None, scale_pos_weight=None,
subsample=None, tree_method=None,
use_label_encoder=False,
validate_parameters=None, verbosity=0))])
key: fit_time
value: [0.0475421 0.03474045 0.03474998 0.03431797 0.03458786 0.03289366
0.03387642 0.03446102 0.03263259 0.03263879]
mean value: 0.035244083404541014
key: score_time
value: [0.01011229 0.0104084 0.01022196 0.01030111 0.01056361 0.01001573
0.00998259 0.01012969 0.01034617 0.01025987]
mean value: 0.01023414134979248
key: test_mcc
value: [ 0.61237244 -0.16666667 0. -0.66666667 0.66666667 0.40824829
0.57735027 0.57735027 0.57735027 0.57735027]
mean value: 0.31633551362514944
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.4 0.57142857 0.33333333 0.8 0.5
0.66666667 0.66666667 0.8 0.8 ]
mean value: 0.6204761904761904
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0.33333333 0.4 0.33333333 1. 1.
1. 1. 0.66666667 0.66666667]
mean value: 0.74
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.4 0.4 0.2 0.8 0.6 0.75 0.75 0.75 0.75]
mean value: 0.62
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.41666667 0.5 0.16666667 0.83333333 0.66666667
0.75 0.75 0.75 0.75 ]
mean value: 0.6333333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.25 0.4 0.2 0.66666667 0.33333333
0.5 0.5 0.66666667 0.66666667]
mean value: 0.4683333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.22
MCC on Training: 0.32
Extracting tts_split_name: 70_30
Total cols in each df:
CV df: 8
metaDF: 15
Adding column: Model_name
Total cols in bts df:
BT_df: 8
First proceeding to rowbind CV and BT dfs:
Final output should have: 23 columns
Combinig 2 using pd.concat by row ~ rowbind
Checking Dims of df to combine:
Dim of CV: (24, 8)
Dim of BT: (24, 8)
8
Number of Common columns: 8
These are: ['MCC', 'ROC_AUC', 'Accuracy', 'Precision', 'JCC', 'F1', 'source_data', 'Recall']
Concatenating dfs with different resampling methods [WF]:
Split type: 70_30
No. of dfs combining: 2
PASS: 2 dfs successfully combined
nrows in combined_df_wf: 48
ncols in combined_df_wf: 8
PASS: proceeding to merge metadata with CV and BT dfs
Adding column: Model_name
=========================================================
SUCCESS: Ran multiple classifiers
=======================================================
==============================================================
Running several classification models (n): 24
List of models:
('AdaBoost Classifier', AdaBoostClassifier(random_state=42))
('Bagging Classifier', BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3))
('Decision Tree', DecisionTreeClassifier(random_state=42))
('Extra Tree', ExtraTreeClassifier(random_state=42))
('Extra Trees', ExtraTreesClassifier(random_state=42))
('Gradient Boosting', GradientBoostingClassifier(random_state=42))
('Gaussian NB', GaussianNB())
('Gaussian Process', GaussianProcessClassifier(random_state=42))
('K-Nearest Neighbors', KNeighborsClassifier())
('LDA', LinearDiscriminantAnalysis())
('Logistic Regression', LogisticRegression(random_state=42))
('Logistic RegressionCV', LogisticRegressionCV(cv=3, random_state=42))
('MLP', MLPClassifier(max_iter=500, random_state=42))
('Multinomial', MultinomialNB())
('Naive Bayes', BernoulliNB())
('Passive Aggresive', PassiveAggressiveClassifier(n_jobs=12, random_state=42))
('QDA', QuadraticDiscriminantAnalysis())
('Random Forest', RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42))
('Random Forest2', RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42))
('Ridge Classifier', RidgeClassifier(random_state=42))
('Ridge ClassifierCV', RidgeClassifierCV(cv=3))
('SVC', SVC(random_state=42))
('Stochastic GDescent', SGDClassifier(n_jobs=12, random_state=42))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
P<00>3@6@ @4@*@ @@@<00>?@@&@@0 $<00><>x(AA<00>x(P<>x(<00>D@!<00>x(<00>x(<00> $ <20>x(`<60>x(4<00>dx(Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
*@<40><><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FF><FE><FF><FF><FF><FF><FF><00>Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
('XGBoost', XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0))
================================================================
Running classifier: 1
Model_name: AdaBoost Classifier
Model func: AdaBoostClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', AdaBoostClassifier(random_state=42))])
key: fit_time
value: [0.0706737 0.06998253 0.07171822 0.07156992 0.06753039 0.07276559
0.07164121 0.07182813 0.06849694 0.07091856]
mean value: 0.0707125186920166
key: score_time
value: [0.01465726 0.01629305 0.01603532 0.01576757 0.01595688 0.01618648
0.01597619 0.01579046 0.01553869 0.01503062]
mean value: 0.015723252296447755
key: test_mcc
value: [-0.16666667 -0.16666667 0. 0.16666667 0.16666667 0.
0.57735027 1. 0. 0.57735027]
mean value: 0.21547005383792514
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.4 0.57142857 0.66666667 0.66666667 0.
0.66666667 1. 0.66666667 0.8 ]
mean value: 0.5838095238095238
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0.33333333 0.4 0.66666667 0.66666667 0.
1. 1. 0.5 0.66666667]
mean value: 0.5566666666666668
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.4 0.6 0.6 0.4 0.75 1. 0.5 0.75]
mean value: 0.58
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.41666667 0.5 0.58333333 0.58333333 0.5
0.75 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.25 0.4 0.5 0.5 0.
0.5 1. 0.5 0.66666667]
mean value: 0.45666666666666667
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.03
MCC on Training: 0.22
Running classifier: 2
Model_name: Bagging Classifier
Model func: BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True,
random_state=42, verbose=3))])
key: fit_time
value: [0.09015608 0.09956288 0.13018298 0.1281836 0.09882951 0.11058927
0.10722399 0.10750437 0.09557104 0.11693478]
mean value: 0.10847384929656982
key: score_time
value: [0.04173255 0.06210113 0.05165505 0.06780457 0.05070138 0.05854702
0.05252862 0.06386089 0.07204771 0.04695678]
mean value: 0.05679357051849365
key: test_mcc
value: [ 0.16666667 -0.16666667 0. -0.66666667 1. 0.40824829
1. 0.57735027 0.57735027 0.57735027]
mean value: 0.3473632431366074
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0.4 0.57142857 0.33333333 1. 0.5
1. 0.66666667 0.8 0.8 ]
mean value: 0.6571428571428571
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0.33333333 0.4 0.33333333 1. 1.
1. 1. 0.66666667 0.66666667]
mean value: 0.6900000000000001
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 1. 0.33333333
1. 0.5 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.4 0.4 0.2 1. 0.6 1. 0.75 0.75 0.75]
mean value: 0.645
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.41666667 0.5 0.16666667 1. 0.66666667
1. 0.75 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0.25 0.4 0.2 1. 0.33333333
1. 0.5 0.66666667 0.66666667]
mean value: 0.535
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.35
Running classifier: 3
Model_name: Decision Tree
Model func: DecisionTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', DecisionTreeClassifier(random_state=42))])
key: fit_time
value: [0.00920463 0.01015854 0.00991392 0.01018214 0.00919986 0.00899363
0.00970221 0.01006627 0.01015687 0.00998592]
mean value: 0.00975639820098877
key: score_time
value: [0.00920033 0.009377 0.00934243 0.0094049 0.00862455 0.00882125
0.00914502 0.00914598 0.00916696 0.00915956]
mean value: 0.009138798713684082
key: test_mcc
value: [ 0.61237244 0.61237244 0. -0.66666667 -0.40824829 0.40824829
0. 0. 0.57735027 0.57735027]
mean value: 0.17127787431041744
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.57142857 0.33333333 0.57142857 0.5
0.5 0.5 0.8 0.8 ]
mean value: 0.590952380952381
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.4 0.33333333 0.5 1.
0.5 0.5 0.66666667 0.66666667]
mean value: 0.6566666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.4 0.2 0.4 0.6 0.5 0.5 0.75 0.75]
mean value: 0.5700000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.5 0.16666667 0.33333333 0.66666667
0.5 0.5 0.75 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.4 0.2 0.4 0.33333333
0.33333333 0.33333333 0.66666667 0.66666667]
mean value: 0.4333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.21
MCC on Training: 0.17
Running classifier: 4
Model_name: Extra Tree
Model func: ExtraTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreeClassifier(random_state=42))])
key: fit_time
value: [0.00935197 0.00813079 0.00821328 0.00815511 0.00824046 0.00807285
0.00819373 0.00816941 0.00828099 0.00876212]
mean value: 0.008357071876525879
key: score_time
value: [0.00913334 0.00846624 0.00820827 0.00829124 0.00821042 0.00843406
0.00823331 0.0084455 0.00835991 0.00913835]
mean value: 0.008492064476013184
key: test_mcc
value: [ 0.61237244 -0.40824829 0.40824829 -0.40824829 0.61237244 0.66666667
1. 0.57735027 0. 0. ]
mean value: 0.30605135167840186
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0. 0.66666667 0.57142857 0.85714286 0.8
1. 0.8 0.5 0.5 ]
mean value: 0.6361904761904762
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0. 0.5 0.5 0.75 1.
1. 0.66666667 0.5 0.5 ]
mean value: 0.6416666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.66666667
1. 1. 0.5 0.5 ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.4 0.6 0.4 0.8 0.8 1. 0.75 0.5 0.5 ]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.33333333 0.66666667 0.33333333 0.75 0.83333333
1. 0.75 0.5 0.5 ]
mean value: 0.6416666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0. 0.5 0.4 0.75 0.66666667
1. 0.66666667 0.33333333 0.33333333]
mean value: 0.5149999999999999
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.14
MCC on Training: 0.31
Running classifier: 5
Model_name: Extra Trees
Model func: ExtraTreesClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreesClassifier(random_state=42))])
key: fit_time
value: [0.08343029 0.07999516 0.0794611 0.08021879 0.08074927 0.07914686
0.08507109 0.08297443 0.08542418 0.08515954]
mean value: 0.08216307163238526
key: score_time
value: [0.01861143 0.01846194 0.01848698 0.01834464 0.01951504 0.01870656
0.01854014 0.01856232 0.018502 0.01856565]
mean value: 0.01862967014312744
key: test_mcc
value: [ 0.16666667 -0.66666667 0.66666667 -0.40824829 0.61237244 0.40824829
0.57735027 0.57735027 0.57735027 -0.57735027]
mean value: 0.19337396407417132
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.57142857 0.85714286 0.5
0.66666667 0.66666667 0.8 0.4 ]
mean value: 0.5761904761904761
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.5 0.75 1.
1. 1. 0.66666667 0.33333333]
mean value: 0.6416666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 0.5 1. 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.8 0.4 0.8 0.6 0.75 0.75 0.75 0.25]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.83333333 0.33333333 0.75 0.66666667
0.75 0.75 0.75 0.25 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.4 0.75 0.33333333
0.5 0.5 0.66666667 0.25 ]
mean value: 0.43999999999999995
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.15
MCC on Training: 0.19
Running classifier: 6
Model_name: Gradient Boosting
Model func: GradientBoostingClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GradientBoostingClassifier(random_state=42))])
key: fit_time
value: [0.12611079 0.1153512 0.10698032 0.1233685 0.11780524 0.10499978
0.11987543 0.12128925 0.12485504 0.10909796]
mean value: 0.11697335243225097
key: score_time
value: [0.00882769 0.00873971 0.00909352 0.00874662 0.00869823 0.0087409
0.00900912 0.0095787 0.0087769 0.00871825]
mean value: 0.008892965316772462
key: test_mcc
value: [0.61237244 0.61237244 0. 0.16666667 0.16666667 0.40824829
0.57735027 0. 0.57735027 0.57735027]
mean value: 0.36983773027576633
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.57142857 0.66666667 0.66666667 0.5
0.66666667 0.5 0.8 0.8 ]
mean value: 0.6504761904761904
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.4 0.66666667 0.66666667 1.
1. 0.5 0.66666667 0.66666667]
mean value: 0.7566666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.4 0.6 0.6 0.6 0.75 0.5 0.75 0.75]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.5 0.58333333 0.58333333 0.66666667
0.75 0.5 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.4 0.5 0.5 0.33333333
0.5 0.33333333 0.66666667 0.66666667]
mean value: 0.49000000000000005
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.48
MCC on Training: 0.37
Running classifier: 7
Model_name: Gaussian NB
Model func: GaussianNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianNB())])
key: fit_time
value: [0.00808597 0.00802708 0.00837111 0.00846457 0.01209831 0.00804043
0.00856924 0.00883937 0.00938725 0.00927067]
mean value: 0.008915400505065918
key: score_time
value: [0.00836539 0.00826764 0.00840521 0.00876927 0.00855994 0.00856376
0.00871682 0.00931144 0.00927901 0.00861907]
mean value: 0.008685755729675292
key: test_mcc
value: [-0.16666667 0. 0. 0.61237244 0. 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.34313043286826167
key: train_mcc
value: [0.57570364 0.698212 0.63496528 0.49692935 0.59982886 0.63994524
0.56652882 0.52704628 0.54659439 0.60609153]
mean value: 0.5891845382894122
key: test_fscore
value: [0.4 0.57142857 0.57142857 0.85714286 0.75 0.5
1. 1. 0.66666667 0.8 ]
mean value: 0.7116666666666667
key: train_fscore
value: [0.80851064 0.85714286 0.83333333 0.76595745 0.80851064 0.82608696
0.8 0.78431373 0.79166667 0.81632653]
mean value: 0.8091848793171292
key: test_precision
value: [0.33333333 0.4 0.4 0.75 0.6 1.
1. 1. 0.5 0.66666667]
mean value: 0.665
key: train_precision
value: [0.73076923 0.75 0.74074074 0.66666667 0.7037037 0.73076923
0.68965517 0.66666667 0.7037037 0.71428571]
mean value: 0.7096960829719451
key: test_recall
value: [0.5 1. 1. 1. 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.8833333333333332
key: train_recall
value: [0.9047619 1. 0.95238095 0.9 0.95 0.95
0.95238095 0.95238095 0.9047619 0.95238095]
mean value: 0.9419047619047619
key: test_accuracy
value: [0.4 0.4 0.4 0.8 0.6 0.6 1. 1. 0.5 0.75]
mean value: 0.645
key: train_accuracy
value: [0.7804878 0.82926829 0.80487805 0.73170732 0.7804878 0.80487805
0.76190476 0.73809524 0.76190476 0.78571429]
mean value: 0.7779326364692218
key: test_roc_auc
value: [0.41666667 0.5 0.5 0.75 0.5 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [0.77738095 0.825 0.80119048 0.73571429 0.78452381 0.80833333
0.76190476 0.73809524 0.76190476 0.78571429]
mean value: 0.7779761904761904
key: test_jcc
value: [0.25 0.4 0.4 0.75 0.6 0.33333333
1. 1. 0.5 0.66666667]
mean value: 0.5900000000000001
key: train_jcc
value: [0.67857143 0.75 0.71428571 0.62068966 0.67857143 0.7037037
0.66666667 0.64516129 0.65517241 0.68965517]
mean value: 0.6802477473500833
MCC on Blind test: -0.03
MCC on Training: 0.34
Running classifier: 8
Model_name: Gaussian Process
Model func: GaussianProcessClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianProcessClassifier(random_state=42))])
key: fit_time
value: [0.0098021 0.00998521 0.00969505 0.00958514 0.00961423 0.00966907
0.00969791 0.00961161 0.00959039 0.00962734]
mean value: 0.00968780517578125
key: score_time
value: [0.00874043 0.00836539 0.00836205 0.00834465 0.00827217 0.00839257
0.00840402 0.00839138 0.00837803 0.00836492]
mean value: 0.00840156078338623
key: test_mcc
value: [ 0.16666667 -0.66666667 0.66666667 -0.40824829 1. 0.40824829
0.57735027 1. -0.57735027 -0.57735027]
mean value: 0.15893163974770408
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.57142857 1. 0.5
0.66666667 1. 0.4 0.4 ]
mean value: 0.5838095238095239
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.5 1. 1.
1. 1. 0.33333333 0.33333333]
mean value: 0.6333333333333332
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.8 0.4 1. 0.6 0.75 1. 0.25 0.25]
mean value: 0.585
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.83333333 0.33333333 1. 0.66666667
0.75 1. 0.25 0.25 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.4 1. 0.33333333
0.5 1. 0.25 0.25 ]
mean value: 0.4733333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.16
Running classifier: 9
Model_name: K-Nearest Neighbors
Model func: KNeighborsClassifier()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', KNeighborsClassifier())])
key: fit_time
value: [0.00794935 0.00888395 0.00920367 0.00797439 0.00891042 0.00893974
0.00868678 0.00903749 0.00901794 0.00891948]
mean value: 0.00875232219696045
key: score_time
value: [0.01479959 0.00988865 0.00997066 0.00931573 0.00966287 0.00976324
0.00944853 0.01455832 0.00960279 0.00982571]
mean value: 0.010683608055114747
key: test_mcc
value: [ 0.16666667 -0.16666667 0.40824829 -0.40824829 0.16666667 -0.61237244
0. 0.57735027 0. 0.57735027]
mean value: 0.07089947693501238
key: train_mcc
value: [0.36718832 0.56527676 0.56527676 0.56086079 0.56086079 0.52420964
0.43656413 0.43052839 0.4472136 0.47673129]
mean value: 0.49347104597079217
key: test_fscore
value: [0.5 0.4 0.66666667 0.57142857 0.66666667 0.
0.5 0.8 0.66666667 0.8 ]
mean value: 0.5571428571428572
key: train_fscore
value: [0.71111111 0.8 0.8 0.76923077 0.76923077 0.77272727
0.73913043 0.72727273 0.75 0.74418605]
mean value: 0.7582889130866886
key: test_precision
value: [0.5 0.33333333 0.5 0.5 0.66666667 0.
0.5 0.66666667 0.5 0.66666667]
mean value: 0.4833333333333333
key: train_precision
value: [0.66666667 0.75 0.75 0.78947368 0.78947368 0.70833333
0.68 0.69565217 0.66666667 0.72727273]
mean value: 0.722353893627349
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [0.76190476 0.85714286 0.85714286 0.75 0.75 0.85
0.80952381 0.76190476 0.85714286 0.76190476]
mean value: 0.8016666666666665
key: test_accuracy
value: [0.6 0.4 0.6 0.4 0.6 0.2 0.5 0.75 0.5 0.75]
mean value: 0.53
key: train_accuracy
value: [0.68292683 0.7804878 0.7804878 0.7804878 0.7804878 0.75609756
0.71428571 0.71428571 0.71428571 0.73809524]
mean value: 0.7441927990708479
key: test_roc_auc
value: [0.58333333 0.41666667 0.66666667 0.33333333 0.58333333 0.25
0.5 0.75 0.5 0.75 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.68095238 0.77857143 0.77857143 0.7797619 0.7797619 0.75833333
0.71428571 0.71428571 0.71428571 0.73809524]
mean value: 0.7436904761904762
key: test_jcc
value: [0.33333333 0.25 0.5 0.4 0.5 0.
0.33333333 0.66666667 0.5 0.66666667]
mean value: 0.41500000000000004
key: train_jcc
value: [0.55172414 0.66666667 0.66666667 0.625 0.625 0.62962963
0.5862069 0.57142857 0.6 0.59259259]
mean value: 0.6114915161466885
MCC on Blind test: 0.21
MCC on Training: 0.07
Running classifier: 10
Model_name: LDA
Model func: LinearDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LinearDiscriminantAnalysis())])
key: fit_time
value: [0.01098967 0.01364136 0.01366186 0.01374197 0.01377368 0.01355457
0.01382995 0.01405096 0.01379728 0.01390123]
mean value: 0.013494253158569336
key: score_time
value: [0.01137424 0.01152468 0.0114975 0.01156473 0.01150799 0.01160431
0.0115006 0.01160264 0.01156759 0.01153708]
mean value: 0.0115281343460083
key: test_mcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
[ 0.16666667 -0.16666667 -0.61237244 -0.40824829 0.40824829 -0.16666667
-0.57735027 1. 1. 0.57735027]
mean value: 0.12209608976375388
key: train_mcc
value: [0.8547619 0.75714286 0.95227002 0.90238095 0.90238095 0.85441771
0.9047619 0.9047619 0.76277007 0.9047619 ]
mean value: 0.8700410175391831
key: test_fscore
value: [0.5 0.4 0.33333333 0.57142857 0.5 0.4
0.4 1. 1. 0.66666667]
mean value: 0.5771428571428572
key: train_fscore
value: [0.92682927 0.87804878 0.97674419 0.95 0.95 0.92307692
0.95238095 0.95238095 0.87804878 0.95238095]
mean value: 0.9339890795534584
key: test_precision
value: [0.5 0.33333333 0.25 0.5 1. 0.5
0.33333333 1. 1. 1. ]
mean value: 0.6416666666666666
key: train_precision
value: [0.95 0.9 0.95454545 0.95 0.95 0.94736842
0.95238095 0.95238095 0.9 0.95238095]
mean value: 0.9409056732740944
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0.33333333 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.5833333333333333
key: train_recall
value: [0.9047619 0.85714286 1. 0.95 0.95 0.9
0.95238095 0.95238095 0.85714286 0.95238095]
mean value: 0.9276190476190477
key: test_accuracy
value: [0.6 0.4 0.2 0.4 0.6 0.4 0.25 1. 1. 0.75]
mean value: 0.5599999999999999
key: train_accuracy
value: [0.92682927 0.87804878 0.97560976 0.95121951 0.95121951 0.92682927
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347851335656214
key: test_roc_auc
value: [0.58333333 0.41666667 0.25 0.33333333 0.66666667 0.41666667
0.25 1. 1. 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [0.92738095 0.87857143 0.975 0.95119048 0.95119048 0.92619048
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347619047619047
key: test_jcc
value: [0.33333333 0.25 0.2 0.4 0.33333333 0.25
0.25 1. 1. 0.5 ]
mean value: 0.45166666666666666
key: train_jcc
value: [0.86363636 0.7826087 0.95454545 0.9047619 0.9047619 0.85714286
0.90909091 0.90909091 0.7826087 0.90909091]
mean value: 0.8777338603425558
MCC on Blind test: -0.3
MCC on Training: 0.12
Running classifier: 11
Model_name: Logistic Regression
Model func: LogisticRegression(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegression(random_state=42))])
key: fit_time
value: [0.02226996 0.01795316 0.01448131 0.01715255 0.01667118 0.01589561
0.01461196 0.01626348 0.01555753 0.01657391]
mean value: 0.016743063926696777
key: score_time
value: [0.01129746 0.00871801 0.00937819 0.00914931 0.00875235 0.00827265
0.00844073 0.00896955 0.00891781 0.00913954]
mean value: 0.00910356044769287
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 -0.40824829 0.61237244 -0.61237244
1. 1. 0. 1. ]
mean value: 0.09587585476806848
key: train_mcc
value: [0.85441771 0.95238095 1. 0.90238095 0.90238095 0.90649828
0.85811633 0.85811633 0.85811633 0.9047619 ]
mean value: 0.8997169740060625
key: test_fscore
value: [0. 0.33333333 0.33333333 0.57142857 0.85714286 0.
1. 1. 0.5 1. ]
mean value: 0.5595238095238095
key: train_fscore
value: [0.93023256 0.97560976 1. 0.95 0.95 0.94736842
0.92682927 0.92682927 0.92682927 0.95238095]
mean value: 0.9486079492548729
key: test_precision
value: [0. 0.25 0.25 0.5 0.75 0. 1. 1. 0.5 1. ]
mean value: 0.525
key: train_precision
value: [0.90909091 1. 1. 0.95 0.95 1.
0.95 0.95 0.95 0.95238095]
mean value: 0.9611471861471861
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_recall
value: [0.95238095 0.95238095 1. 0.95 0.95 0.9
0.9047619 0.9047619 0.9047619 0.95238095]
mean value: 0.9371428571428572
key: test_accuracy
value: [0.4 0.2 0.2 0.4 0.8 0.2 1. 1. 0.5 1. ]
mean value: 0.5700000000000001
key: train_accuracy
value: [0.92682927 0.97560976 1. 0.95121951 0.95121951 0.95121951
0.92857143 0.92857143 0.92857143 0.95238095]
mean value: 0.9494192799070849
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.33333333 0.75 0.25
1. 1. 0.5 1. ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [0.92619048 0.97619048 1. 0.95119048 0.95119048 0.95
0.92857143 0.92857143 0.92857143 0.95238095]
mean value: 0.9492857142857142
key: test_jcc
value: [0. 0.2 0.2 0.4 0.75 0.
1. 1. 0.33333333 1. ]
mean value: 0.4883333333333333
key: train_jcc
value: [0.86956522 0.95238095 1. 0.9047619 0.9047619 0.9
0.86363636 0.86363636 0.86363636 0.90909091]
mean value: 0.9031469979296066
MCC on Blind test: 0.03
MCC on Training: 0.1
Running classifier: 12
Model_name: Logistic RegressionCV
Model func: LogisticRegressionCV(cv=3, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegressionCV(cv=3, random_state=42))])
key: fit_time
value: [0.14993048 0.1616044 0.152004 0.169487 0.18104076 0.15314579
0.16439247 0.16538048 0.16092014 0.17207479]
mean value: 0.16299803256988527
key: score_time
value: [0.00850177 0.00943732 0.00930285 0.00938153 0.00937605 0.00874543
0.00849867 0.00855517 0.00860405 0.0086534 ]
mean value: 0.008905625343322754
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 -0.40824829 0.16666667 0.
1. 1. 0. 0. ]
mean value: 0.012542521434735132
key: train_mcc
value: [0.41487884 1. 0.7098505 1. 1. 0.95227002
0.85811633 1. 1. 1. ]
mean value: 0.8935115692085429
key: test_fscore
value: [0. 0.33333333 0.33333333 0.57142857 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4904761904761905
key: train_fscore
value: [0.72727273 1. 0.86363636 1. 1. 0.97435897
0.92682927 1. 1. 1. ]
mean value: 0.9492097333560748
key: test_precision
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0. 0.25 0.25 0.5 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4666666666666666
key: train_precision
value: [0.69565217 1. 0.82608696 1. 1. 1.
0.95 1. 1. 1. ]
mean value: 0.9471739130434782
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.5333333333333333
key: train_recall
value: [0.76190476 1. 0.9047619 1. 1. 0.95
0.9047619 1. 1. 1. ]
mean value: 0.9521428571428571
key: test_accuracy
value: [0.4 0.2 0.2 0.4 0.6 0.4 1. 1. 0.5 0.5]
mean value: 0.52
key: train_accuracy
value: [0.70731707 1. 0.85365854 1. 1. 0.97560976
0.92857143 1. 1. 1. ]
mean value: 0.9465156794425088
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.33333333 0.58333333 0.5
1. 1. 0.5 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [0.70595238 1. 0.85238095 1. 1. 0.975
0.92857143 1. 1. 1. ]
mean value: 0.9461904761904762
key: test_jcc
value: [0. 0.2 0.2 0.4 0.5 0.
1. 1. 0.33333333 0.33333333]
mean value: 0.39666666666666667
key: train_jcc
value: [0.57142857 1. 0.76 1. 1. 0.95
0.86363636 1. 1. 1. ]
mean value: 0.9145064935064935
MCC on Blind test: -0.05
MCC on Training: 0.01
Running classifier: 13
Model_name: MLP
Model func: MLPClassifier(max_iter=500, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MLPClassifier(max_iter=500, random_state=42))])
key: fit_time
value: [0.24151373 0.31732178 0.20899272 0.2480824 0.23589945 0.24067688
0.24676585 0.24599648 0.23300409 0.33954525]
mean value: 0.25577986240386963
key: score_time
value: [0.01282716 0.01175332 0.01173353 0.01182961 0.01173878 0.01169705
0.01172638 0.01176333 0.01172805 0.01187062]
mean value: 0.01186678409576416
key: test_mcc
value: [ 0. -0.61237244 -0.16666667 -0.40824829 0.16666667 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.19649778334938311
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.33333333 0.4 0.57142857 0.66666667 0.5
1. 1. 0.5 0.8 ]
mean value: 0.5771428571428572
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.25 0.33333333 0.5 0.66666667 1.
1. 1. 0.5 0.66666667]
mean value: 0.5916666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.33333333
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.4 0.4 0.6 0.6 1. 1. 0.5 0.75]
mean value: 0.6050000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.5 0.25 0.41666667 0.33333333 0.58333333 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.2 0.25 0.4 0.5 0.33333333
1. 1. 0.33333333 0.66666667]
mean value: 0.4683333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.2
Running classifier: 14
Model_name: Multinomial
Model func: MultinomialNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MultinomialNB())])
key: fit_time
value: [0.01154876 0.01127577 0.00858712 0.00814319 0.00837946 0.00889277
0.00902009 0.00868893 0.00828362 0.00838399]
mean value: 0.009120368957519531
key: score_time
value: [0.01118398 0.01124835 0.00861812 0.00842786 0.00885057 0.00857306
0.00891972 0.00833225 0.00849366 0.00825143]
mean value: 0.009089899063110352
key: test_mcc
value: [-0.40824829 0. -0.61237244 -0.40824829 0.16666667 0.
1. 0.57735027 0.57735027 0. ]
mean value: 0.08924981884223976
key: train_mcc
value: [0.36515617 0.31666667 0.46623254 0.46300848 0.46300848 0.41428571
0.43052839 0.38138504 0.42857143 0.43052839]
mean value: 0.415937128657245
key: test_fscore
value: [0. 0.57142857 0.33333333 0.57142857 0.66666667 0.
1. 0.8 0.8 0.5 ]
mean value: 0.5242857142857142
key: train_fscore
value: [0.69767442 0.66666667 0.75555556 0.71794872 0.71794872 0.7
0.72727273 0.69767442 0.71428571 0.72727273]
mean value: 0.712229966416013
key: test_precision
value: [0. 0.4 0.25 0.5 0.66666667 0.
1. 0.66666667 0.66666667 0.5 ]
mean value: 0.46499999999999997
key: train_precision
value: [0.68181818 0.66666667 0.70833333 0.73684211 0.73684211 0.7
0.69565217 0.68181818 0.71428571 0.69565217]
mean value: 0.701791063627448
key: test_recall
value: [0. 1. 0.5 0.66666667 0.66666667 0.
1. 1. 1. 0.5 ]
mean value: 0.6333333333333333
key: train_recall
value: [0.71428571 0.66666667 0.80952381 0.7 0.7 0.7
0.76190476 0.71428571 0.71428571 0.76190476]
mean value: 0.7242857142857143
key: test_accuracy
value: [0.4 0.4 0.2 0.4 0.6 0.4 1. 0.75 0.75 0.5 ]
mean value: 0.54
key: train_accuracy
value: [0.68292683 0.65853659 0.73170732 0.73170732 0.73170732 0.70731707
0.71428571 0.69047619 0.71428571 0.71428571]
mean value: 0.7077235772357724
key: test_roc_auc
value: [0.33333333 0.5 0.25 0.33333333 0.58333333 0.5
1. 0.75 0.75 0.5 ]
mean value: 0.55
key: train_roc_auc
value: [0.68214286 0.65833333 0.7297619 0.73095238 0.73095238 0.70714286
0.71428571 0.69047619 0.71428571 0.71428571]
mean value: 0.7072619047619048
key: test_jcc
value: [0. 0.4 0.2 0.4 0.5 0.
1. 0.66666667 0.66666667 0.33333333]
mean value: 0.41666666666666663
key: train_jcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0.53571429 0.5 0.60714286 0.56 0.56 0.53846154
0.57142857 0.53571429 0.55555556 0.57142857]
mean value: 0.5535445665445665
MCC on Blind test: 0.23
MCC on Training: 0.09
Running classifier: 15
Model_name: Naive Bayes
Model func: BernoulliNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', BernoulliNB())])
key: fit_time
value: [0.00845838 0.00860071 0.00848722 0.00885081 0.00808978 0.00885248
0.00819016 0.00901937 0.00845933 0.00805902]
mean value: 0.00850672721862793
key: score_time
value: [0.00894594 0.00872087 0.00868893 0.00826478 0.00870943 0.00836611
0.00838709 0.00906491 0.00829411 0.00821567]
mean value: 0.008565783500671387
key: test_mcc
value: [ 0.61237244 -0.16666667 -0.61237244 1. -0.61237244 0.40824829
0.57735027 0. 0.57735027 0.57735027]
mean value: 0.2361259995670279
key: train_mcc
value: [0.65952381 0.78072006 0.78072006 0.698212 0.65915306 0.81975606
0.67357531 0.78446454 0.81322028 0.78446454]
mean value: 0.7453809730969173
key: test_fscore
value: [0.66666667 0.4 0.33333333 1. 0. 0.5
0.66666667 0. 0.8 0.66666667]
mean value: 0.5033333333333333
key: train_fscore
value: [0.82926829 0.86486486 0.86486486 0.78787879 0.75 0.88888889
0.82051282 0.86486486 0.9 0.86486486]
mean value: 0.8436008249422884
key: test_precision
value: [1. 0.33333333 0.25 1. 0. 1.
1. 0. 0.66666667 1. ]
mean value: 0.625
key: train_precision
value: [0.85 1. 1. 1. 1. 1.
0.88888889 1. 0.94736842 1. ]
mean value: 0.9686257309941521
key: test_recall
value: [0.5 0.5 0.5 1. 0. 0.33333333
0.5 0. 1. 0.5 ]
mean value: 0.4833333333333333
key: train_recall
value: [0.80952381 0.76190476 0.76190476 0.65 0.6 0.8
0.76190476 0.76190476 0.85714286 0.76190476]
mean value: 0.7526190476190475
key: test_accuracy
value: [0.8 0.4 0.2 1. 0.2 0.6 0.75 0.5 0.75 0.75]
mean value: 0.595
key: train_accuracy
value: [0.82926829 0.87804878 0.87804878 0.82926829 0.80487805 0.90243902
0.83333333 0.88095238 0.9047619 0.88095238]
mean value: 0.8621951219512196
key: test_roc_auc
value: [0.75 0.41666667 0.25 1. 0.25 0.66666667
0.75 0.5 0.75 0.75 ]
mean value: 0.6083333333333333
key: train_roc_auc
value: [0.8297619 0.88095238 0.88095238 0.825 0.8 0.9
0.83333333 0.88095238 0.9047619 0.88095238]
mean value: 0.8616666666666667
key: test_jcc
value: [0.5 0.25 0.2 1. 0. 0.33333333
0.5 0. 0.66666667 0.5 ]
mean value: 0.39499999999999996
key: train_jcc
value: [0.70833333 0.76190476 0.76190476 0.65 0.6 0.8
0.69565217 0.76190476 0.81818182 0.76190476]
mean value: 0.7319786373047242
MCC on Blind test: -0.07
MCC on Training: 0.24
Running classifier: 16
Model_name: Passive Aggresive
Model func: PassiveAggressiveClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
PassiveAggressiveClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00944281 0.00986218 0.00964999 0.00876284 0.00858927 0.00873113
0.00857592 0.00833726 0.00859237 0.0086391 ]
mean value: 0.008918285369873047
key: score_time
value: [0.00912499 0.00907922 0.00838161 0.00837588 0.00822067 0.00842881
0.00826788 0.00829506 0.0084579 0.00854564]
mean value: 0.008517765998840332
key: test_mcc
value: [-0.66666667 -0.16666667 -0.61237244 -0.40824829 0.16666667 0.
1. 1. 0. 1. ]
mean value: 0.13127126071736755
key: train_mcc
value: [0.77831178 0.90692382 1. 0.74124932 0.95238095 0.95227002
0.80952381 0.81322028 0.8660254 0.78446454]
mean value: 0.860436992906499
key: test_fscore
value: [0. 0.4 0.33333333 0.57142857 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.5471428571428572
key: train_fscore
value: [0.89361702 0.95 1. 0.86956522 0.97560976 0.97435897
0.9047619 0.90909091 0.92307692 0.86486486]
mean value: 0.9264945570919038
key: test_precision
value: [0. 0.33333333 0.25 0.5 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.525
key: train_precision
value: [0.80769231 1. 1. 0.76923077 0.95238095 1.
0.9047619 0.86956522 1. 1. ]
mean value: 0.9303631151457239
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 1. 0.5 1. ]
mean value: 0.5833333333333333
key: train_recall
value: [1. 0.9047619 1. 1. 1. 0.95
0.9047619 0.95238095 0.85714286 0.76190476]
mean value: 0.9330952380952382
key: test_accuracy
value: [0.2 0.4 0.2 0.4 0.6 0.4 1. 1. 0.5 1. ]
mean value: 0.5700000000000001
key: train_accuracy
value: [0.87804878 0.95121951 1. 0.85365854 0.97560976 0.97560976
0.9047619 0.9047619 0.92857143 0.88095238]
mean value: 0.9253193960511034
key: test_roc_auc
value: [0.16666667 0.41666667 0.25 0.33333333 0.58333333 0.5
1. 1. 0.5 1. ]
mean value: 0.575
key: train_roc_auc
value: [0.875 0.95238095 1. 0.85714286 0.97619048 0.975
0.9047619 0.9047619 0.92857143 0.88095238]
mean value: 0.9254761904761905
key: test_jcc
value: [0. 0.25 0.2 0.4 0.5 0.
1. 1. 0.33333333 1. ]
mean value: 0.4683333333333334
key: train_jcc
value: [0.80769231 0.9047619 1. 0.76923077 0.95238095 0.95
0.82608696 0.83333333 0.85714286 0.76190476]
mean value: 0.8662533842968625
MCC on Blind test: 0.05
MCC on Training: 0.13
Running classifier: 17
Model_name: QDA
Model func: QuadraticDiscriminantAnalysis()
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', QuadraticDiscriminantAnalysis())])
key: fit_time
value: [0.0084331 0.00824332 0.00820327 0.00829053 0.00904059 0.00834751
0.00831366 0.00825167 0.00869656 0.00836062]
mean value: 0.008418083190917969
key: score_time
value: [0.00837088 0.00824666 0.00837278 0.00829577 0.00903153 0.00833392
0.0082221 0.00839305 0.00824666 0.00831914]
mean value: 0.00838325023651123
key: test_mcc
value: [-0.40824829 -0.40824829 0. 0.16666667 0.66666667 0.40824829
-0.57735027 1. -0.57735027 0. ]
mean value: 0.027038450449021856
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0. 0. 0.66666667 0.8 0.5
0.4 1. 0.4 0.5 ]
mean value: 0.42666666666666664
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0. 0. 0.66666667 1. 1.
0.33333333 1. 0.33333333 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0. 0. 0.66666667 0.66666667 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.41666666666666663
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.6 0.6 0.8 0.6 0.25 1. 0.25 0.5 ]
mean value: 0.54
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.33333333 0.5 0.58333333 0.83333333 0.66666667
0.25 1. 0.25 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0. 0. 0.5 0.66666667 0.33333333
0.25 1. 0.25 0.33333333]
mean value: 0.33333333333333337
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.07
MCC on Training: 0.03
Running classifier: 18
Model_name: Random Forest
Model func: RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(n_estimators=1000, n_jobs=12,
random_state=42))])
key: fit_time
value: [0.60021329 0.57720327 0.54249668 0.54380131 0.54201055 0.56307817
0.5312767 0.56808448 0.59204793 0.53911257]
mean value: 0.5599324941635132
key: score_time
value: [0.18375874 0.14311218 0.16572428 0.13906121 0.1496129 0.14000821
0.14519739 0.13516092 0.16832924 0.17730117]
mean value: 0.15472662448883057
key: test_mcc
value: [ 0.16666667 -1. 0.40824829 -0.40824829 1. 0.40824829
0.57735027 1. 0.57735027 -0.57735027]
mean value: 0.21522652263201553
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.66666667 0.57142857 1. 0.5
0.66666667 1. 0.8 0.4 ]
mean value: 0.6104761904761905
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.5 0.5 1. 1.
1. 1. 0.66666667 0.33333333]
mean value: 0.65
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.65
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0. 0.6 0.4 1. 0.6 0.75 1. 0.75 0.25]
mean value: 0.595
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0. 0.66666667 0.33333333 1. 0.66666667
0.75 1. 0.75 0.25 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.5 0.4 1. 0.33333333
0.5 1. 0.66666667 0.25 ]
mean value: 0.49833333333333335
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.22
Running classifier: 19
Model_name: Random Forest2
Model func: RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...age_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12,
oob_score=True, random_state=42))])
key: fit_time
value: [0.88413286 0.83431458 0.85372138 0.92493558 0.80129886 0.96354318
0.86790776 0.80547285 0.90535116 0.86681151]
mean value: 0.8707489728927612
key: score_time
value: [0.18714929 0.14363599 0.18987608 0.16804981 0.18646693 0.21752691
0.18257451 0.16987777 0.17513752 0.19997525]
mean value: 0.182027006149292
key: test_mcc
value: [ 0.16666667 -1. 0.40824829 -0.40824829 0.61237244 0.40824829
1. 1. 0.57735027 0. ]
mean value: 0.276463766201595
key: train_mcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0.7565654 0.90692382 0.8047619 0.90238095 0.8547619 0.85441771
0.9047619 0.80952381 0.81322028 0.80952381]
mean value: 0.841684150259194
key: test_fscore
value: [0.5 0. 0.66666667 0.57142857 0.85714286 0.5
1. 1. 0.8 0.5 ]
mean value: 0.6395238095238095
key: train_fscore
value: [0.88372093 0.95 0.9047619 0.95 0.92682927 0.92307692
0.95238095 0.9047619 0.9 0.9047619 ]
mean value: 0.9200293788268832
key: test_precision
value: [0.5 0. 0.5 0.5 0.75 1.
1. 1. 0.66666667 0.5 ]
mean value: 0.6416666666666667
key: train_precision
value: [0.86363636 1. 0.9047619 0.95 0.9047619 0.94736842
0.95238095 0.9047619 0.94736842 0.9047619 ]
mean value: 0.9279801777170199
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.7
key: train_recall
value: [0.9047619 0.9047619 0.9047619 0.95 0.95 0.9
0.95238095 0.9047619 0.85714286 0.9047619 ]
mean value: 0.9133333333333334
key: test_accuracy
value: [0.6 0. 0.6 0.4 0.8 0.6 1. 1. 0.75 0.5 ]
mean value: 0.625
key: train_accuracy
value: [0.87804878 0.95121951 0.90243902 0.95121951 0.92682927 0.92682927
0.95238095 0.9047619 0.9047619 0.9047619 ]
mean value: 0.9203252032520325
key: test_roc_auc
value: [0.58333333 0. 0.66666667 0.33333333 0.75 0.66666667
1. 1. 0.75 0.5 ]
mean value: 0.625
key: train_roc_auc
value: [0.87738095 0.95238095 0.90238095 0.95119048 0.92738095 0.92619048
0.95238095 0.9047619 0.9047619 0.9047619 ]
mean value: 0.9203571428571428
key: test_jcc
value: [0.33333333 0. 0.5 0.4 0.75 0.33333333
1. 1. 0.66666667 0.33333333]
mean value: 0.5316666666666666
key: train_jcc
value: [0.79166667 0.9047619 0.82608696 0.9047619 0.86363636 0.85714286
0.90909091 0.82608696 0.81818182 0.82608696]
mean value: 0.8527503293807641
MCC on Blind test: -0.13
MCC on Training: 0.28
Running classifier: 20
Model_name: Ridge Classifier
Model func: RidgeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifier(random_state=42))])
key: fit_time
value: [0.02394223 0.00923705 0.0101018 0.00940156 0.00993848 0.00877523
0.00975657 0.01009393 0.00900698 0.00886273]
mean value: 0.010911655426025391
key: score_time
value: [0.01595521 0.00951576 0.00970626 0.00916386 0.00844979 0.00879884
0.00896311 0.00875783 0.00836921 0.00870633]
mean value: 0.009638619422912598
key: test_mcc
value: [-0.40824829 -0.16666667 -0.61237244 -0.66666667 0.61237244 0.
1. 1. 0. 1. ]
mean value: 0.17584183762028038
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.4 0.33333333 0.33333333 0.85714286 0.
1. 1. 0.5 1. ]
mean value: 0.5423809523809524
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.33333333 0.25 0.33333333 0.75 0.
1. 1. 0.5 1. ]
mean value: 0.5166666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.
1. 1. 0.5 1. ]
mean value: 0.5833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.2 0.2 0.8 0.4 1. 1. 0.5 1. ]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.41666667 0.25 0.16666667 0.75 0.5
1. 1. 0.5 1. ]
mean value: 0.5916666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.25 0.2 0.2 0.75 0.
1. 1. 0.33333333 1. ]
mean value: 0.47333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.31
MCC on Training: 0.18
Running classifier: 21
Model_name: Ridge ClassifierCV
Model func: RidgeClassifierCV(cv=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifierCV(cv=3))])
key: fit_time
value: [0.02831769 0.02491283 0.02651954 0.02506971 0.02484965 0.02458382
0.02456856 0.02427793 0.02577114 0.02595329]
mean value: 0.0254824161529541
key: score_time
value: [0.00875139 0.00857258 0.00846076 0.0084796 0.00839949 0.00886321
0.00845504 0.00846457 0.00845838 0.008497 ]
mean value: 0.008540201187133788
key: test_mcc
value: [ 0. -0.16666667 -0.61237244 -0.66666667 0.61237244 0.40824829
1. 1. 0. 0.57735027]
mean value: 0.21522652263201558
key: train_mcc
value: [1. 1. 0.8547619 1. 1. 1.
0.85811633 1. 1. 1. ]
mean value: 0.9712878235082938
key: test_fscore
value: [0. 0.4 0.33333333 0.33333333 0.85714286 0.5
1. 1. 0.5 0.66666667]
mean value: 0.5590476190476191
key: train_fscore
value: [1. 1. 0.92682927 1. 1. 1.
0.92682927 1. 1. 1. ]
mean value: 0.9853658536585366
key: test_precision
value: [0. 0.33333333 0.25 0.33333333 0.75 1.
1. 1. 0.5 1. ]
mean value: 0.6166666666666666
key: train_precision
value: [1. 1. 0.95 1. 1. 1. 0.95 1. 1. 1. ]
mean value: 0.99
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.33333333
1. 1. 0.5 0.5 ]
mean value: 0.5666666666666667
key: train_recall
value: [1. 1. 0.9047619 1. 1. 1. 0.9047619
1. 1. 1. ]
mean value: 0.980952380952381
key: test_accuracy
value: [0.6 0.4 0.2 0.2 0.8 0.6 1. 1. 0.5 0.75]
mean value: 0.605
key: train_accuracy
value: [1. 1. 0.92682927 1. 1. 1.
0.92857143 1. 1. 1. ]
mean value: 0.9855400696864113
key: test_roc_auc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0.5 0.41666667 0.25 0.16666667 0.75 0.66666667
1. 1. 0.5 0.75 ]
mean value: 0.6
key: train_roc_auc
value: [1. 1. 0.92738095 1. 1. 1.
0.92857143 1. 1. 1. ]
mean value: 0.9855952380952381
key: test_jcc
value: [0. 0.25 0.2 0.2 0.75 0.33333333
1. 1. 0.33333333 0.5 ]
mean value: 0.45666666666666667
key: train_jcc
value: [1. 1. 0.86363636 1. 1. 1.
0.86363636 1. 1. 1. ]
mean value: 0.9727272727272727
MCC on Blind test: -0.31
MCC on Training: 0.22
Running classifier: 22
Model_name: SVC
Model func: SVC(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SVC(random_state=42))])
key: fit_time
value: [0.00965905 0.00967765 0.00953698 0.00963664 0.00914717 0.00982451
0.00912523 0.00886345 0.0094161 0.00933146]
mean value: 0.009421825408935547
key: score_time
value: [0.00935841 0.00985456 0.00974321 0.00947905 0.00937629 0.00971651
0.0096314 0.00936913 0.00922918 0.00883269]
mean value: 0.0094590425491333
key: test_mcc
value: [-0.40824829 -0.16666667 -0.16666667 -0.40824829 0.16666667 0.
1. 0.57735027 0. 0. ]
mean value: 0.059418702159523294
key: train_mcc
value: [0.65952381 0.8547619 0.75714286 0.7633652 0.65871309 0.85441771
0.76980036 0.62187434 0.71428571 0.71754731]
mean value: 0.7371432287703027
key: test_fscore
value: [0. 0.4 0.4 0.57142857 0.66666667 0.
1. 0.66666667 0.5 0.5 ]
mean value: 0.4704761904761904
key: train_fscore
value: [0.82926829 0.92682927 0.87804878 0.86486486 0.82051282 0.92307692
0.87179487 0.8 0.85714286 0.86363636]
mean value: 0.8635175042492115
key: test_precision
value: [0. 0.33333333 0.33333333 0.5 0.66666667 0.
1. 1. 0.5 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [0.85 0.95 0.9 0.94117647 0.84210526 0.94736842
0.94444444 0.84210526 0.85714286 0.82608696]
mean value: 0.8900429676065696
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 0.5 0.5 0.5 ]
mean value: 0.4833333333333333
key: train_recall
value: [0.80952381 0.9047619 0.85714286 0.8 0.8 0.9
0.80952381 0.76190476 0.85714286 0.9047619 ]
mean value: 0.8404761904761904
key: test_accuracy
value: [0.4 0.4 0.4 0.4 0.6 0.4 1. 0.75 0.5 0.5 ]
mean value: 0.5349999999999999
key: train_accuracy
value: [0.82926829 0.92682927 0.87804878 0.87804878 0.82926829 0.92682927
0.88095238 0.80952381 0.85714286 0.85714286]
mean value: 0.8673054587688733
key: test_roc_auc
value: [0.33333333 0.41666667 0.41666667 0.33333333 0.58333333 0.5
1. 0.75 0.5 0.5 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.8297619 0.92738095 0.87857143 0.87619048 0.82857143 0.92619048
0.88095238 0.80952381 0.85714286 0.85714286]
mean value: 0.8671428571428572
key: test_jcc
value: [0. 0.25 0.25 0.4 0.5 0.
1. 0.5 0.33333333 0.33333333]
mean value: 0.3566666666666667
key: train_jcc
value: [0.70833333 0.86363636 0.7826087 0.76190476 0.69565217 0.85714286
0.77272727 0.66666667 0.75 0.76 ]
mean value: 0.7618672124976473
MCC on Blind test: 0.12
MCC on Training: 0.06
Running classifier: 23
Model_name: Stochastic GDescent
Model func: SGDClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SGDClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00848198 0.00838614 0.00836706 0.00840068 0.00844431 0.00905252
0.00888348 0.00917697 0.00973868 0.00835919]
mean value: 0.008729100227355957
key: score_time
value: [0.00826812 0.00857329 0.00815392 0.00844526 0.00853515 0.00836849
0.00935626 0.00903535 0.00908804 0.00849342]
mean value: 0.008631730079650879
key: test_mcc
value: [-0.40824829 -0.61237244 -0.61237244 0.16666667 0. 0.
1. 0.57735027 0. 0.57735027]
mean value: 0.0688374043190466
key: train_mcc
value: [0.90649828 1. 1. 0.95227002 0.70272837 1.
0.55901699 0.40824829 0.36760731 0.8660254 ]
mean value: 0.7762394663113877
key: test_fscore
value: [0. 0.33333333 0.33333333 0.66666667 0.75 0.
1. 0.66666667 0.66666667 0.66666667]
mean value: 0.5083333333333334
key: train_fscore
value: [0.95454545 1. 1. 0.97435897 0.85106383 1.
0.64516129 0.44444444 0.72413793 0.92307692]
mean value: 0.8516788847570094
key: test_precision
value: [0. 0.25 0.25 0.66666667 0.6 0.
1. 1. 0.5 1. ]
mean value: 0.5266666666666666
key: train_precision
value: [0.91304348 1. 1. 1. 0.74074074 1.
1. 1. 0.56756757 1. ]
mean value: 0.9221351786569176
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 0.5 1. 0.5 ]
mean value: 0.5666666666666667
key: train_recall
value: [1. 1. 1. 0.95 1. 1.
0.47619048 0.28571429 1. 0.85714286]
mean value: 0.856904761904762
key: test_accuracy
value: [0.4 0.2 0.2 0.6 0.6 0.4 1. 0.75 0.5 0.75]
mean value: 0.54
key: train_accuracy
value: [0.95121951 1. 1. 0.97560976 0.82926829 1.
0.73809524 0.64285714 0.61904762 0.92857143]
mean value: 0.8684668989547039
key: test_roc_auc
value: [0.33333333 0.25 0.25 0.58333333 0.5 0.5
1. 0.75 0.5 0.75 ]
mean value: 0.5416666666666666
key: train_roc_auc
value: [0.95 1. 1. 0.975 0.83333333 1.
0.73809524 0.64285714 0.61904762 0.92857143]
mean value: 0.8686904761904761
key: test_jcc
value: [0. 0.2 0.2 0.5 0.6 0. 1. 0.5 0.5 0.5]
mean value: 0.4
key: train_jcc
value: [0.91304348 1. 1. 0.95 0.74074074 1.
0.47619048 0.28571429 0.56756757 0.85714286]
mean value: 0.7790399405616796
MCC on Blind test: 0.0
MCC on Training: 0.07
Running classifier: 24
Model_name: XGBoost
Model func: /home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:427: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_CV['source_data'] = 'CV'
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:454: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_BT['source_data'] = 'BT'
XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...
interaction_constraints=None, learning_rate=None,
max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan,
monotone_constraints=None, n_estimators=100,
n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None,
reg_lambda=None, scale_pos_weight=None,
subsample=None, tree_method=None,
use_label_encoder=False,
validate_parameters=None, verbosity=0))])
key: fit_time
value: [0.03942108 0.0357883 0.03759861 0.03542089 0.0371716 0.03603816
0.03947306 0.20275068 0.03404307 0.03263688]
mean value: 0.05303423404693604
key: score_time
value: [0.01133871 0.01178408 0.01097012 0.01137185 0.01078272 0.01107693
0.01159072 0.01123071 0.01056361 0.01047015]
mean value: 0.011117959022521972
key: test_mcc
value: [ 0.61237244 -0.16666667 0. -0.66666667 0.66666667 0.40824829
0.57735027 0.57735027 0.57735027 0.57735027]
mean value: 0.31633551362514944
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.4 0.57142857 0.33333333 0.8 0.5
0.66666667 0.66666667 0.8 0.8 ]
mean value: 0.6204761904761904
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0.33333333 0.4 0.33333333 1. 1.
1. 1. 0.66666667 0.66666667]
mean value: 0.74
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
0.5 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.4 0.4 0.2 0.8 0.6 0.75 0.75 0.75 0.75]
mean value: 0.62
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.41666667 0.5 0.16666667 0.83333333 0.66666667
0.75 0.75 0.75 0.75 ]
mean value: 0.6333333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.25 0.4 0.2 0.66666667 0.33333333
0.5 0.5 0.66666667 0.66666667]
mean value: 0.4683333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.22
MCC on Training: 0.32
Extracting tts_split_name: 70_30
Total cols in each df:
CV df: 8
metaDF: 15
Adding column: Model_name
Total cols in bts df:
BT_df: 8
First proceeding to rowbind CV and BT dfs:
Final output should have: 23 columns
Combinig 2 using pd.concat by row ~ rowbind
Checking Dims of df to combine:
Dim of CV: (24, 8)
Dim of BT: (24, 8)
8
Number of Common columns: 8
These are: ['MCC', 'ROC_AUC', 'Accuracy', 'Precision', 'JCC', 'F1', 'source_data', 'Recall']
Concatenating dfs with different resampling methods [WF]:
Split type: 70_30
No. of dfs combining: 2
PASS: 2 dfs successfully combined
nrows in combined_df_wf: 48
ncols in combined_df_wf: 8
PASS: proceeding to merge metadata with CV and BT dfs
Adding column: Model_name
=========================================================
SUCCESS: Ran multiple classifiers
=======================================================
==============================================================
Running several classification models (n): 24
List of models:
('AdaBoost Classifier', AdaBoostClassifier(random_state=42))
('Bagging Classifier', BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3))
('Decision Tree', DecisionTreeClassifier(random_state=42))
('Extra Tree', ExtraTreeClassifier(random_state=42))
('Extra Trees', ExtraTreesClassifier(random_state=42))
('Gradient Boosting', GradientBoostingClassifier(random_state=42))
('Gaussian NB', GaussianNB())
('Gaussian Process', GaussianProcessClassifier(random_state=42))
('K-Nearest Neighbors', KNeighborsClassifier())
('LDA', LinearDiscriminantAnalysis())
('Logistic Regression', LogisticRegression(random_state=42))
('Logistic RegressionCV', LogisticRegressionCV(cv=3, random_state=42))
('MLP', MLPClassifier(max_iter=500, random_state=42))
('Multinomial', MultinomialNB())
('Naive Bayes', BernoulliNB())
('Passive Aggresive', PassiveAggressiveClassifier(n_jobs=12, random_state=42))
('QDA', QuadraticDiscriminantAnalysis())
('Random Forest', RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42))
('Random Forest2', RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42))
('Ridge Classifier', RidgeClassifier(random_state=42))
('Ridge ClassifierCV', RidgeClassifierCV(cv=3))
('SVC', SVC(random_state=42))
('Stochastic GDescent', SGDClassifier(n_jobs=12, random_state=42))
('XGBoost', XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0))
================================================================
Running classifier: 1
Model_name: AdaBoost Classifier
Model func: AdaBoostClassifier(random_state=42)
Running model pipeline: [Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
q<00>:l3V@/<2F><>(Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
<00> loky_p<5F><00><><E0>8VP|=׍[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
<00><><EF><FF><FF><FF><FF><FF>q@<40><>.<2E>@<40><>.<2E>[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.4s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.4s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', AdaBoostClassifier(random_state=42))])
key: fit_time
value: [0.07088137 0.06979895 0.07155275 0.07130504 0.07216024 0.07068849
0.07368135 0.07089376 0.07142544 0.07148743]
mean value: 0.07138748168945312
key: score_time
value: [0.01498604 0.01561141 0.01537704 0.01454854 0.01553416 0.01516986
0.0147202 0.01489377 0.01559353 0.01535773]
mean value: 0.01517922878265381
key: test_mcc
value: [0.16666667 0.16666667 0.66666667 0.16666667 0.61237244 0.40824829
0.57735027 0. 1. 0.57735027]
mean value: 0.43419879312055765
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0.5 0.8 0.66666667 0.85714286 0.5
0.8 0.5 1. 0.8 ]
mean value: 0.6923809523809524
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0.5 0.66666667 0.66666667 0.75 1.
0.66666667 0.5 1. 0.66666667]
mean value: 0.6916666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 1. 0.33333333
1. 0.5 1. 1. ]
mean value: 0.75
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.6 0.8 0.6 0.8 0.6 0.75 0.5 1. 0.75]
mean value: 0.7
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.58333333 0.83333333 0.58333333 0.75 0.66666667
0.75 0.5 1. 0.75 ]
mean value: 0.7
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0.33333333 0.66666667 0.5 0.75 0.33333333
0.66666667 0.33333333 1. 0.66666667]
mean value: 0.5583333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.03
MCC on Training: 0.43
Running classifier: 2
Model_name: Bagging Classifier
Model func: BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True,
random_state=42, verbose=3))])
key: fit_time
value: [0.0968864 0.11801028 0.09970188 0.12701225 0.14569211 0.10844421
0.14443231 0.11996961 0.10739756 0.11337447]
mean value: 0.11809210777282715
key: score_time
value: [0.06114459 0.03731775 0.06222534 0.07297015 0.05134463 0.05550885
0.03839612 0.06989408 0.0383203 0.05145597]
mean value: 0.05385777950286865
key: test_mcc
value: [0.16666667 0.61237244 1. 0.16666667 0.16666667 0.40824829
0.57735027 0. 1. 1. ]
mean value: 0.5097970995349284
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0.66666667 1. 0.66666667 0.66666667 0.5
0.8 0.66666667 1. 1. ]
mean value: 0.7466666666666667
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 1. 1. 0.66666667 0.66666667 1.
0.66666667 0.5 1. 1. ]
mean value: 0.8
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
1. 1. 1. 1. ]
mean value: 0.7666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.8 1. 0.6 0.6 0.6 0.75 0.5 1. 1. ]
mean value: 0.745
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.75 1. 0.58333333 0.58333333 0.66666667
0.75 0.5 1. 1. ]
mean value: 0.7416666666666667
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0.5 1. 0.5 0.5 0.33333333
0.66666667 0.5 1. 1. ]
mean value: 0.6333333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.31
MCC on Training: 0.51
Running classifier: 3
Model_name: Decision Tree
Model func: DecisionTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', DecisionTreeClassifier(random_state=42))])
key: fit_time
value: [0.0103035 0.00883818 0.0100503 0.00899768 0.0089047 0.01392531
0.01449227 0.01354194 0.00921726 0.00934529]
mean value: 0.010761642456054687
key: score_time
value: [0.00900936 0.00859308 0.00837898 0.00829482 0.00833654 0.01341581
0.0134666 0.0091486 0.00860786 0.00855803]
mean value: 0.00958096981048584
key: test_mcc
value: [ 0.61237244 0.61237244 0.66666667 0.16666667 0.61237244 0.40824829
0.57735027 -0.57735027 1. 0.57735027]
mean value: 0.46560492000742065
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 0.8 0.66666667 0.85714286 0.5
0.8 0.4 1. 0.8 ]
mean value: 0.7157142857142857
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 0.66666667 0.66666667 0.75 1.
0.66666667 0.33333333 1. 0.66666667]
mean value: 0.775
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 1. 0.33333333
1. 0.5 1. 1. ]
mean value: 0.75
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 0.8 0.6 0.8 0.6 0.75 0.25 1. 0.75]
mean value: 0.7150000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 0.83333333 0.58333333 0.75 0.66666667
0.75 0.25 1. 0.75 ]
mean value: 0.7083333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 0.66666667 0.5 0.75 0.33333333
0.66666667 0.25 1. 0.66666667]
mean value: 0.5833333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.21
MCC on Training: 0.47
Running classifier: 4
Model_name: Extra Tree
Model func: ExtraTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreeClassifier(random_state=42))])
key: fit_time
value: [0.00927901 0.0085938 0.0082202 0.00806785 0.00863695 0.00819731
0.0090692 0.0092175 0.00897098 0.00883889]
mean value: 0.008709168434143067
key: score_time
value: [0.00919247 0.00865507 0.00819445 0.00891638 0.00822783 0.00916386
0.00907803 0.00921464 0.00912642 0.0083282 ]
mean value: 0.008809733390808105
key: test_mcc
value: [ 0.61237244 -0.66666667 1. 0.16666667 0.61237244 -0.40824829
0.57735027 0. 0. -1. ]
mean value: 0.0893846850117352
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0. 1. 0.66666667 0.85714286 0.57142857
0.8 0.66666667 0.5 0. ]
mean value: 0.5728571428571428
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0. 1. 0.66666667 0.75 0.5
0.66666667 0.5 0.5 0. ]
mean value: 0.5583333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.66666667
1. 1. 0.5 0. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.2 1. 0.6 0.8 0.4 0.75 0.5 0.5 0. ]
mean value: 0.555
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.16666667 1. 0.58333333 0.75 0.33333333
0.75 0.5 0.5 0. ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0. 1. 0.5 0.75 0.4
0.66666667 0.5 0.33333333 0. ]
mean value: 0.46499999999999997
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.14
MCC on Training: 0.09
Running classifier: 5
Model_name: Extra Trees
Model func: ExtraTreesClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreesClassifier(random_state=42))])
key: fit_time
value: [0.08186746 0.07829213 0.07604194 0.07571936 0.07979321 0.07597041
0.0771172 0.07677698 0.07582831 0.07556725]
mean value: 0.07729742527008057
key: score_time
value: [0.01793885 0.01814055 0.01664257 0.01657104 0.01739144 0.01732755
0.01675653 0.01675177 0.01702929 0.01664209]
mean value: 0.017119169235229492
key: test_mcc
value: [ 0.16666667 -0.66666667 0.16666667 0.16666667 1. -0.16666667
-0.57735027 0. 1. 0.57735027]
mean value: 0.16666666666666666
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.5 0.66666667 1. 0.4
0.4 0.66666667 1. 0.66666667]
mean value: 0.58
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.5 0.66666667 1. 0.5
0.33333333 0.5 1. 1. ]
mean value: 0.6
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 0.5 0.66666667 1. 0.33333333
0.5 1. 1. 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.2 0.6 0.6 1. 0.4 0.25 0.5 1. 0.75]
mean value: 0.5900000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.16666667 0.58333333 0.58333333 1. 0.41666667
0.25 0.5 1. 0.75 ]
mean value: 0.5833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.33333333 0.5 1. 0.25
0.25 0.5 1. 0.5 ]
mean value: 0.4666666666666666
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.15
MCC on Training: 0.17
Running classifier: 6
Model_name: Gradient Boosting
Model func: GradientBoostingClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GradientBoostingClassifier(random_state=42))])
key: fit_time
value: [0.12004709 0.11619353 0.11725736 0.11747646 0.11872649 0.10573745
0.10928178 0.1207552 0.11994958 0.11960483]
mean value: 0.11650297641754151
key: score_time
value: [0.00889969 0.00885892 0.00928378 0.00892401 0.00893497 0.00892329
0.00901747 0.00891471 0.00900674 0.00896883]
mean value: 0.008973240852355957
key: test_mcc
value: [ 0.61237244 0.61237244 1. 0.16666667 1. 0.40824829
0.57735027 -0.57735027 1. 0. ]
mean value: 0.47996598285221187
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.66666667 1. 0.66666667 1. 0.5
0.8 0.4 1. 0.5 ]
mean value: 0.72
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 1. 1. 0.66666667 1. 1.
0.66666667 0.33333333 1. 0.5 ]
mean value: 0.8166666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 1. 0.33333333
1. 0.5 1. 0.5 ]
mean value: 0.7
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.8 1. 0.6 1. 0.6 0.75 0.25 1. 0.5 ]
mean value: 0.7300000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.75 1. 0.58333333 1. 0.66666667
0.75 0.25 1. 0.5 ]
mean value: 0.725
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.5 1. 0.5 1. 0.33333333
0.66666667 0.25 1. 0.33333333]
mean value: 0.6083333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.48
MCC on Training: 0.48
Running classifier: 7
Model_name: Gaussian NB
Model func: GaussianNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianNB())])
key: fit_time
value: [0.00813937 0.00863266 0.00883198 0.00876927 0.00880313 0.00876546
0.00889754 0.0079639 0.008147 0.00815392]
mean value: 0.008510422706604005
key: score_time
value: [0.00908256 0.00896645 0.0085392 0.00891399 0.00834346 0.00852489
0.00860429 0.00880432 0.00860095 0.00899816]
mean value: 0.008737826347351074
key: test_mcc
value: [0.16666667 0. 0.40824829 0.61237244 0.61237244 0.40824829
0. 0.57735027 0.57735027 0. ]
mean value: 0.33626086573652336
key: train_mcc
value: [0.61969655 0.62048368 0.53206577 0.56010413 0.59982886 0.63994524
0.58834841 0.54659439 0.56652882 0.56652882]
mean value: 0.5840124674124577
key: test_fscore
value: [0.5 0.57142857 0.66666667 0.85714286 0.85714286 0.5
0.66666667 0.8 0.8 0.66666667]
mean value: 0.6885714285714286
key: train_fscore
value: [0.82608696 0.82352941 0.79166667 0.79166667 0.80851064 0.82608696
0.80851064 0.79166667 0.8 0.8 ]
mean value: 0.8067724601403929
key: test_precision
value: [0.5 0.4 0.5 0.75 0.75 1.
0.5 0.66666667 0.66666667 0.5 ]
mean value: 0.6233333333333333
key: train_precision
value: [0.76 0.7 0.7037037 0.67857143 0.7037037 0.73076923
0.73076923 0.7037037 0.68965517 0.68965517]
mean value: 0.7090531346048587
key: test_recall
value: [0.5 1. 1. 1. 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.8833333333333332
key: train_recall
value: [0.9047619 1. 0.9047619 0.95 0.95 0.95
0.9047619 0.9047619 0.95238095 0.95238095]
mean value: 0.9373809523809523
key: test_accuracy
value: [0.6 0.4 0.6 0.8 0.8 0.6 0.5 0.75 0.75 0.5 ]
mean value: 0.63
key: train_accuracy
value: [0.80487805 0.7804878 0.75609756 0.75609756 0.7804878 0.80487805
0.78571429 0.76190476 0.76190476 0.76190476]
mean value: 0.7754355400696864
key: test_roc_auc
value: [0.58333333 0.5 0.66666667 0.75 0.75 0.66666667
0.5 0.75 0.75 0.5 ]
mean value: 0.6416666666666666
key: train_roc_auc
value: [0.80238095 0.775 0.75238095 0.76071429 0.78452381 0.80833333
0.78571429 0.76190476 0.76190476 0.76190476]
mean value: 0.7754761904761904
key: test_jcc
value: [0.33333333 0.4 0.5 0.75 0.75 0.33333333
0.5 0.66666667 0.66666667 0.5 ]
mean value: 0.54
key: train_jcc
value: [0.7037037 0.7 0.65517241 0.65517241 0.67857143 0.7037037
0.67857143 0.65517241 0.66666667 0.66666667]
mean value: 0.6763400839262909
MCC on Blind test: -0.03
MCC on Training: 0.34
Running classifier: 8
Model_name: Gaussian Process
Model func: GaussianProcessClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianProcessClassifier(random_state=42))])
key: fit_time
value: [0.01024461 0.01082993 0.00972795 0.01096725 0.00998783 0.00987554
0.01061535 0.01060319 0.01106381 0.01122451]
mean value: 0.010513997077941895
key: score_time
value: [0.00941777 0.00849223 0.00860977 0.0084219 0.00841165 0.00892353
0.009655 0.00945258 0.0088129 0.00955749]
mean value: 0.008975481986999512
key: test_mcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[ 0.16666667 -1. 1. 0.16666667 1. -0.16666667
-0.57735027 0. 0. 0.57735027]
mean value: 0.11666666666666667
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 1. 0.66666667 1. 0.4
0.4 0.66666667 0.5 0.66666667]
mean value: 0.58
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 1. 0.66666667 1. 0.5
0.33333333 0.5 0.5 1. ]
mean value: 0.6
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0. 1. 0.6 1. 0.4 0.25 0.5 0.5 0.75]
mean value: 0.5599999999999999
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0. 1. 0.58333333 1. 0.41666667
0.25 0.5 0.5 0.75 ]
mean value: 0.5583333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 1. 0.5 1. 0.25
0.25 0.5 0.33333333 0.5 ]
mean value: 0.4666666666666666
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.12
Running classifier: 9
Model_name: K-Nearest Neighbors
Model func: KNeighborsClassifier()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', KNeighborsClassifier())])
key: fit_time
value: [0.00882387 0.00779724 0.00790095 0.00829983 0.00905085 0.0081563
0.0088253 0.00841641 0.0089922 0.00852966]
mean value: 0.00847926139831543
key: score_time
value: [0.0096581 0.0095911 0.00939512 0.00957799 0.00974464 0.0098207
0.00983071 0.01009345 0.00980425 0.00920081]
mean value: 0.009671688079833984
key: test_mcc
value: [ 0.16666667 -0.61237244 0.40824829 0.16666667 -0.40824829 0.
-0.57735027 0. 0.57735027 0. ]
mean value: -0.02790391023624612
key: train_mcc
value: [0.31655495 0.47439956 0.51320273 0.51551459 0.46428571 0.56836003
0.57735027 0.43656413 0.47673129 0.52380952]
mean value: 0.4866772800860473
key: test_fscore
value: [0.5 0.33333333 0.66666667 0.66666667 0.57142857 0.
0.4 0.66666667 0.8 0.5 ]
mean value: 0.5104761904761904
key: train_fscore
value: [0.68181818 0.76595745 0.77272727 0.76190476 0.73170732 0.79069767
0.8 0.73913043 0.74418605 0.76190476]
mean value: 0.7550033897949502
key: test_precision
value: [0.5 0.25 0.5 0.66666667 0.5 0.
0.33333333 0.5 0.66666667 0.5 ]
mean value: 0.4416666666666666
key: train_precision
value: [0.65217391 0.69230769 0.73913043 0.72727273 0.71428571 0.73913043
0.75 0.68 0.72727273 0.76190476]
mean value: 0.7183478405652319
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 0.5 ]
mean value: 0.6333333333333333
key: train_recall
value: [0.71428571 0.85714286 0.80952381 0.8 0.75 0.85
0.85714286 0.80952381 0.76190476 0.76190476]
mean value: 0.7971428571428572
key: test_accuracy
value: [0.6 0.2 0.6 0.6 0.4 0.4 0.25 0.5 0.75 0.5 ]
mean value: 0.48
key: train_accuracy
value: [0.65853659 0.73170732 0.75609756 0.75609756 0.73170732 0.7804878
0.78571429 0.71428571 0.73809524 0.76190476]
mean value: 0.7414634146341463
key: test_roc_auc
value: [0.58333333 0.25 0.66666667 0.58333333 0.33333333 0.5
0.25 0.5 0.75 0.5 ]
mean value: 0.4916666666666667
key: train_roc_auc
value: [0.65714286 0.72857143 0.7547619 0.75714286 0.73214286 0.78214286
0.78571429 0.71428571 0.73809524 0.76190476]
mean value: 0.7411904761904762
key: test_jcc
value: [0.33333333 0.2 0.5 0.5 0.4 0.
0.25 0.5 0.66666667 0.33333333]
mean value: 0.3683333333333333
key: train_jcc
value: [0.51724138 0.62068966 0.62962963 0.61538462 0.57692308 0.65384615
0.66666667 0.5862069 0.59259259 0.61538462]
mean value: 0.6074565281461833
MCC on Blind test: 0.21
MCC on Training: -0.03
Running classifier: 10
Model_name: LDA
Model func: LinearDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LinearDiscriminantAnalysis())])
key: fit_time
value: [0.01167679 0.01826382 0.01448941 0.01492167 0.01469254 0.01517916
0.01869845 0.01910591 0.01449609 0.0146513 ]
mean value: 0.01561751365661621
key: score_time
value: [0.01538086 0.01228762 0.01230597 0.01232481 0.01150227 0.01221585
0.01167464 0.01225209 0.01155663 0.01207185]
mean value: 0.012357258796691894
key: test_mcc
value: [-0.61237244 0.16666667 1. -0.61237244 -0.66666667 0.66666667
0.57735027 0.57735027 1. -0.57735027]
mean value: 0.15192720644647034
key: train_mcc
value: [0.8547619 0.75714286 0.90238095 0.90238095 0.90238095 0.8047619
0.9047619 0.85811633 0.9047619 0.9047619 ]
mean value: 0.8696211568416272
key: test_fscore
value: [0.33333333 0.5 1. 0. 0.33333333 0.8
0.8 0.66666667 1. 0.4 ]
mean value: 0.5833333333333334
key: train_fscore
value: [0.92682927 0.87804878 0.95238095 0.95 0.95 0.9
0.95238095 0.92682927 0.95238095 0.95238095]
mean value: 0.934123112659698
key: test_precision
value: [0.25 0.5 1. 0. 0.33333333 1.
0.66666667 1. 1. 0.33333333]
mean value: 0.6083333333333333
key: train_precision
value: [0.95 0.9 0.95238095 0.95 0.95 0.9
0.95238095 0.95 0.95238095 0.95238095]
mean value: 0.940952380952381
key: test_recall
value: [0.5 0.5 1. 0. 0.33333333 0.66666667
1. 0.5 1. 0.5 ]
mean value: 0.6
key: train_recall
value: [0.9047619 0.85714286 0.95238095 0.95 0.95 0.9
0.95238095 0.9047619 0.95238095 0.95238095]
mean value: 0.9276190476190477
key: test_accuracy
value: [0.2 0.6 1. 0.2 0.2 0.8 0.75 0.75 1. 0.25]
mean value: 0.575
key: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
train_accuracy
value: [0.92682927 0.87804878 0.95121951 0.95121951 0.95121951 0.90243902
0.95238095 0.92857143 0.95238095 0.95238095]
mean value: 0.9346689895470384
key: test_roc_auc
value: [0.25 0.58333333 1. 0.25 0.16666667 0.83333333
0.75 0.75 1. 0.25 ]
mean value: 0.5833333333333334
key: train_roc_auc
value: [0.92738095 0.87857143 0.95119048 0.95119048 0.95119048 0.90238095
0.95238095 0.92857143 0.95238095 0.95238095]
mean value: 0.9347619047619047
key: test_jcc
value: [0.2 0.33333333 1. 0. 0.2 0.66666667
0.66666667 0.5 1. 0.25 ]
mean value: 0.48166666666666663
key: train_jcc
value: [0.86363636 0.7826087 0.90909091 0.9047619 0.9047619 0.81818182
0.90909091 0.86363636 0.90909091 0.90909091]
mean value: 0.8773950686994165
MCC on Blind test: -0.3
MCC on Training: 0.15
Running classifier: 11
Model_name: Logistic Regression
Model func: LogisticRegression(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegression(random_state=42))])
key: fit_time
value: [0.02232027 0.01768303 0.01362634 0.01618624 0.01690435 0.01509452
0.01629186 0.0160079 0.01721382 0.01615214]
mean value: 0.016748046875
key: score_time
value: [0.01149535 0.00892115 0.0090301 0.00848508 0.00858998 0.00863743
0.00846815 0.00854588 0.00891304 0.00888133]
mean value: 0.00899674892425537
key: test_mcc
value: [-0.66666667 0.16666667 0.61237244 0.16666667 0.61237244 0.
0.57735027 0. 1. 0. ]
mean value: 0.24687618072478817
key: train_mcc
value: [0.90238095 0.95238095 0.8547619 1. 0.90238095 0.90649828
0.80952381 0.9047619 0.85811633 0.95346259]
mean value: 0.9044267675090705
key: test_fscore
value: [0. 0.5 0.66666667 0.66666667 0.85714286 0.
0.8 0.66666667 1. 0.66666667]
mean value: 0.5823809523809524
key: train_fscore
value: [0.95238095 0.97560976 0.92682927 1. 0.95 0.94736842
0.9047619 0.95238095 0.92682927 0.97674419]
mean value: 0.951290470930588
key: test_precision
value: [0. 0.5 1. 0.66666667 0.75 0.
0.66666667 0.5 1. 0.5 ]
mean value: 0.5583333333333333
key: train_precision
value: [0.95238095 1. 0.95 1. 0.95 1.
0.9047619 0.95238095 0.95 0.95454545]
mean value: 0.9614069264069263
key: test_recall
value: [0. 0.5 0.5 0.66666667 1. 0.
1. 1. 1. 1. ]
mean value: 0.6666666666666666
key: train_recall
value: [0.95238095 0.95238095 0.9047619 1. 0.95 0.9
0.9047619 0.95238095 0.9047619 1. ]
mean value: 0.9421428571428571
key: test_accuracy
value: [0.2 0.6 0.8 0.6 0.8 0.4 0.75 0.5 1. 0.5 ]
mean value: 0.615
key: train_accuracy
value: [0.95121951 0.97560976 0.92682927 1. 0.95121951 0.95121951
0.9047619 0.95238095 0.92857143 0.97619048]
mean value: 0.9518002322880372
key: test_roc_auc
value: [0.16666667 0.58333333 0.75 0.58333333 0.75 0.5
0.75 0.5 1. 0.5 ]
mean value: 0.6083333333333333
key: train_roc_auc
value: [0.95119048 0.97619048 0.92738095 1. 0.95119048 0.95
0.9047619 0.95238095 0.92857143 0.97619048]
mean value: 0.9517857142857142
key: test_jcc
value: [0. 0.33333333 0.5 0.5 0.75 0.
0.66666667 0.5 1. 0.5 ]
mean value: 0.475
key: train_jcc
value: [0.90909091 0.95238095 0.86363636 1. 0.9047619 0.9
0.82608696 0.90909091 0.86363636 0.95454545]
mean value: 0.9083229813664596
MCC on Blind test: 0.03
MCC on Training: 0.25
Running classifier: 12
Model_name: Logistic RegressionCV
Model func: LogisticRegressionCV(cv=3, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegressionCV(cv=3, random_state=42))])
key: fit_time
value: [0.15982699 0.18013906 0.17114401 0.16270256 0.18830061 0.18011808
0.17512369 0.18504333 0.1956327 0.18354774]
mean value: 0.17815787792205812
key: score_time
value: [0.00964713 0.00978851 0.00865817 0.00940061 0.00867319 0.00906944
0.0096128 0.00865793 0.00980377 0.0095191 ]
mean value: 0.009283065795898438
key: test_mcc
value: [-0.66666667 0.16666667 0.61237244 0.16666667 0. 0.40824829
0.57735027 0. 1. 0. ]
mean value: 0.226463766201595
key: train_mcc
value: [0.8047619 1. 0.70714286 1. 0. 1.
0.76277007 1. 1. 1. ]
mean value: 0.8274674833301235
key: test_fscore
value: [0. 0.5 0.66666667 0.66666667 0. 0.5
0.8 0.66666667 1. 0.66666667]
mean value: 0.5466666666666666
key: train_fscore
value: [0.9047619 1. 0.85714286 1. 0. 1.
0.87804878 1. 1. 1. ]
mean value: 0.8639953542392567
key: test_precision
value: [0. 0.5 1. 0.66666667 0. 1.
0.66666667 0.5 1. 0.5 ]
mean value: 0.5833333333333333
key: train_precision
value: [0.9047619 1. 0.85714286 1. 0. 1.
0.9 1. 1. 1. ]
mean value: 0.8661904761904762
key: test_recall
value: [0. 0.5 0.5 0.66666667 0. 0.33333333
1. 1. 1. 1. ]
mean value: 0.6
key: train_recall
value: [0.9047619 1. 0.85714286 1. 0. 1.
0.85714286 1. 1. 1. ]
mean value: 0.8619047619047618
key: test_accuracy
value: [0.2 0.6 0.8 0.6 0.4 0.6 0.75 0.5 1. 0.5 ]
mean value: 0.595
key: train_accuracy
value: [0.90243902 1. 0.85365854 1. 0.51219512 1.
0.88095238 1. 1. 1. ]
mean value: 0.914924506387921
key: test_roc_auc
value: [0.16666667 0.58333333 0.75 0.58333333 0.5 0.66666667
0.75 0.5 1. 0.5 ]
mean value: 0.6
key: train_roc_auc
value: [0.90238095 1. 0.85357143 1. 0.5 1.
0.88095238 1. 1. 1. ]
mean value: 0.9136904761904763
key: test_jcc
value: [0. 0.33333333 0.5 0.5 0. 0.33333333
0.66666667 0.5 1. 0.5 ]
mean value: 0.4333333333333333
key: train_jcc
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
[0.82608696 1. 0.75 1. 0. 1.
0.7826087 1. 1. 1. ]
mean value: 0.8358695652173914
MCC on Blind test: -0.23
MCC on Training: 0.23
Running classifier: 13
Model_name: MLP
Model func: MLPClassifier(max_iter=500, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MLPClassifier(max_iter=500, random_state=42))])
key: fit_time
value: [0.22335672 0.23056054 0.23545814 0.23782778 0.33668995 0.23442483
0.24139619 0.23602247 0.24432111 0.23437071]
mean value: 0.24544284343719483
key: score_time
value: [0.01173234 0.01174593 0.0117445 0.02407169 0.01178074 0.011729
0.01169252 0.01177955 0.01169324 0.01172042]
mean value: 0.012968993186950684
key: test_mcc
value: [-0.40824829 0.16666667 -0.40824829 0.16666667 0.40824829 0.40824829
1. 0. 0.57735027 0. ]
mean value: 0.19106836025229593
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.5 0. 0.66666667 0.5 0.5
1. 0.66666667 0.66666667 0.66666667]
mean value: 0.5166666666666667
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.5 0. 0.66666667 1. 1.
1. 0.5 1. 0.5 ]
mean value: 0.6166666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0. 0.66666667 0.33333333 0.33333333
1. 1. 0.5 1. ]
mean value: 0.5333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.6 0.4 0.6 0.6 0.6 1. 0.5 0.75 0.5 ]
mean value: 0.595
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.58333333 0.33333333 0.58333333 0.66666667 0.66666667
1. 0.5 0.75 0.5 ]
mean value: 0.5916666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.33333333 0. 0.5 0.33333333 0.33333333
1. 0.5 0.5 0.5 ]
mean value: 0.4
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.19
Running classifier: 14
Model_name: Multinomial
Model func: MultinomialNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MultinomialNB())])
key: fit_time
value: [0.01112938 0.01100969 0.00846815 0.00803924 0.00810933 0.00823998
0.00898314 0.00798368 0.00822973 0.00795078]
mean value: 0.008814311027526856
key: score_time
value: [0.01108384 0.01106858 0.00879216 0.00833678 0.00837255 0.00889945
0.00877881 0.00815177 0.00817919 0.0082829 ]
mean value: 0.008994603157043457
key: test_mcc
value: [-0.40824829 0.40824829 -0.16666667 0.16666667 0.16666667 0.
0. 0. 0.57735027 0. ]
mean value: 0.07440169358562924
key: train_mcc
value: [0.2681441 0.65871309 0.41487884 0.41487884 0.51190476 0.41428571
0.42857143 0.42857143 0.38138504 0.52620136]
mean value: 0.44475346110468605
key: test_fscore
value: [0. 0.66666667 0.4 0.66666667 0.66666667 0.
0.66666667 0.66666667 0.8 0.5 ]
mean value: 0.5033333333333333
key: train_fscore
value: [0.66666667 0.8372093 0.72727273 0.68421053 0.75 0.7
0.71428571 0.71428571 0.69767442 0.77272727]
mean value: 0.7264332342484117
key: test_precision
value: [0. 0.5 0.33333333 0.66666667 0.66666667 0.
0.5 0.5 0.66666667 0.5 ]
mean value: 0.4333333333333333
key: train_precision
value: [0.625 0.81818182 0.69565217 0.72222222 0.75 0.7
0.71428571 0.71428571 0.68181818 0.73913043]
mean value: 0.7160576259489303
key: test_recall
value: [0. 1. 0.5 0.66666667 0.66666667 0.
1. 1. 1. 0.5 ]
mean value: 0.6333333333333333
key: train_recall
value: [0.71428571 0.85714286 0.76190476 0.65 0.75 0.7
0.71428571 0.71428571 0.71428571 0.80952381]
mean value: 0.7385714285714287
key: test_accuracy
value: [0.4 0.6 0.4 0.6 0.6 0.4 0.5 0.5 0.75 0.5 ]
mean value: 0.525
key: train_accuracy
value: [0.63414634 0.82926829 0.70731707 0.70731707 0.75609756 0.70731707
0.71428571 0.71428571 0.69047619 0.76190476]
mean value: 0.7222415795586528
key: test_roc_auc
value: [0.33333333 0.66666667 0.41666667 0.58333333 0.58333333 0.5
0.5 0.5 0.75 0.5 ]
mean value: 0.5333333333333333
key: train_roc_auc
value: [0.63214286 0.82857143 0.70595238 0.70595238 0.75595238 0.70714286
0.71428571 0.71428571 0.69047619 0.76190476]
mean value: 0.7216666666666667
key: test_jcc
value: [0. 0.5 0.25 0.5 0.5 0.
0.5 0.5 0.66666667 0.33333333]
mean value: 0.375
key: train_jcc
value: [0.5 0.72 0.57142857 0.52 0.6 0.53846154
0.55555556 0.55555556 0.53571429 0.62962963]
mean value: 0.5726345136345137
MCC on Blind test: 0.23
MCC on Training: 0.07
Running classifier: 15
Model_name: Naive Bayes
Model func: BernoulliNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', BernoulliNB())])
key: fit_time
value: [0.00891638 0.00885677 0.00823188 0.00822496 0.00908804 0.00876379
0.00821567 0.00836968 0.00843811 0.00831771]
mean value: 0.008542299270629883
key: score_time /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
value: [0.00907683 0.00833702 0.00835824 0.00836325 0.0092988 0.00829434
0.00833154 0.00847101 0.00832009 0.00835919]
mean value: 0.008521032333374024
key: test_mcc
value: [ 0.61237244 -0.16666667 -0.16666667 0.16666667 -0.61237244 0.40824829
0.57735027 -0.57735027 0.57735027 -0.57735027]
mean value: 0.02415816237971965
key: train_mcc
value: [0.78072006 0.7633652 0.62325386 0.73786479 0.73786479 0.73786479
0.82462113 0.78446454 0.72760688 0.78446454]
mean value: 0.7502090562083469
key: test_fscore
value: [0.66666667 0.4 0.4 0.66666667 0. 0.5
0.66666667 0. 0.8 0.4 ]
mean value: 0.45
key: train_fscore
value: [0.86486486 0.88888889 0.78947368 0.82352941 0.82352941 0.82352941
0.89473684 0.86486486 0.84210526 0.86486486]
mean value: 0.8480387508251285
key: test_precision
value: [1. 0.33333333 0.33333333 0.66666667 0. 1.
1. 0. 0.66666667 0.33333333]
mean value: 0.5333333333333333
key: train_precision
value: [1. 0.83333333 0.88235294 1. 1. 1.
1. 1. 0.94117647 1. ]
mean value: 0.9656862745098038
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0. 0.33333333
0.5 0. 1. 0.5 ]
mean value: 0.45
key: train_recall
value: [0.76190476 0.95238095 0.71428571 0.7 0.7 0.7
0.80952381 0.76190476 0.76190476 0.76190476]
mean value: 0.7623809523809524
key: test_accuracy
value: [0.8 0.4 0.4 0.6 0.2 0.6 0.75 0.25 0.75 0.25]
mean value: 0.5
key: train_accuracy
value: [0.87804878 0.87804878 0.80487805 0.85365854 0.85365854 0.85365854
0.9047619 0.88095238 0.85714286 0.88095238]
mean value: 0.8645760743321718
key: test_roc_auc
value: [0.75 0.41666667 0.41666667 0.58333333 0.25 0.66666667
0.75 0.25 0.75 0.25 ]
mean value: 0.5083333333333333
key: train_roc_auc
value: [0.88095238 0.87619048 0.80714286 0.85 0.85 0.85
0.9047619 0.88095238 0.85714286 0.88095238]
mean value: 0.8638095238095238
key: test_jcc
value: [0.5 0.25 0.25 0.5 0. 0.33333333
0.5 0. 0.66666667 0.25 ]
mean value: 0.32499999999999996
key: train_jcc
value: [0.76190476 0.8 0.65217391 0.7 0.7 0.7
0.80952381 0.76190476 0.72727273 0.76190476]
mean value: 0.7374684735554301
MCC on Blind test: -0.07
MCC on Training: 0.02
Running classifier: 16
Model_name: Passive Aggresive
Model func: PassiveAggressiveClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
PassiveAggressiveClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.0114274 0.00852418 0.00853562 0.00821495 0.00862932 0.00857162
0.00912762 0.00930691 0.00964165 0.00927424]
mean value: 0.009125351905822754
key: score_time
value: [0.0082233 0.00810313 0.00813222 0.00810933 0.00816798 0.00892162
0.00892925 0.00901985 0.00906062 0.00914264]
mean value: 0.008580994606018067
key: test_mcc
value: [-0.61237244 -0.16666667 0.40824829 0.16666667 0. 0.
1. 0.57735027 1. 0. ]
mean value: 0.2373226123957694
key: train_mcc
value: [0.77831178 0.90649828 0.698212 0.86333169 0.8213423 0.90649828
0.82462113 0.78446454 0.82462113 0.95346259]
mean value: 0.8361363718506268
key: test_fscore
value: [0.33333333 0.4 0.66666667 0.66666667 0.75 0.
1. 0.8 1. 0.66666667]
mean value: 0.6283333333333333
key: train_fscore
value: [0.89361702 0.95454545 0.85714286 0.93023256 0.90909091 0.94736842
0.89473684 0.86486486 0.91304348 0.97674419]
mean value: 0.9141386592525492
key: test_precision
value: [0.25 0.33333333 0.5 0.66666667 0.6 0.
1. 0.66666667 1. 0.5 ]
mean value: 0.5516666666666666
key: train_precision
value: [0.80769231 0.91304348 0.75 0.86956522 0.83333333 1.
1. 1. 0.84 0.95454545]
mean value: 0.896817979122327
key: test_recall
value: [0.5 0.5 1. 0.66666667 1. 0.
1. 1. 1. 1. ]
mean value: 0.7666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 0.9
0.80952381 0.76190476 1. 1. ]
mean value: 0.9471428571428572
key: test_accuracy
value: [0.2 0.4 0.6 0.6 0.6 0.4 1. 0.75 1. 0.5 ]
mean value: 0.605
key: train_accuracy
value: [0.87804878 0.95121951 0.82926829 0.92682927 0.90243902 0.95121951
0.9047619 0.88095238 0.9047619 0.97619048]
mean value: 0.9105691056910569
key: test_roc_auc
value: [0.25 0.41666667 0.66666667 0.58333333 0.5 0.5
1. 0.75 1. 0.5 ]
mean value: 0.6166666666666666
key: train_roc_auc
value: [0.875 0.95 0.825 0.92857143 0.9047619 0.95
0.9047619 0.88095238 0.9047619 0.97619048]
mean value: 0.9099999999999999
key: test_jcc
value: [0.2 0.25 0.5 0.5 0.6 0.
1. 0.66666667 1. 0.5 ]
mean value: 0.5216666666666667
key: train_jcc
value: [0.80769231 0.91304348 0.75 0.86956522 0.83333333 0.9
0.80952381 0.76190476 0.84 0.95454545]
mean value: 0.843960836265184
MCC on Blind test: 0.01
MCC on Training: 0.24
Running classifier: 17
Model_name: QDA
Model func: QuadraticDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', QuadraticDiscriminantAnalysis())])
key: fit_time
value: [0.00907946 0.00956416 0.00959086 0.00946903 0.00860596 0.00879407
0.00890636 0.00897217 0.00866079 0.00853682]
mean value: 0.00901796817779541
key: score_time
value: [0.00881743 0.00922155 0.00925684 0.00932598 0.00868034 0.00835371
0.00860643 0.00837111 0.00851178 0.00883555]
mean value: 0.00879807472229004
key: test_mcc
value: [-0.16666667 -0.61237244 0.61237244 -0.40824829 -0.16666667 -0.66666667
0.57735027 0. -1. 0. ]
mean value: -0.1830898021274237
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.33333333 0.66666667 0.57142857 0.4 0.33333333
0.8 0.66666667 0. 0.5 ]
mean value: 0.4671428571428572
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
[0.33333333 0.25 1. 0.5 0.5 0.33333333
0.66666667 0.5 0. 0.5 ]
mean value: 0.4583333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0.33333333 0.33333333
1. 1. 0. 0.5 ]
mean value: 0.5333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.2 0.8 0.4 0.4 0.2 0.75 0.5 0. 0.5 ]
mean value: 0.41500000000000004
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.25 0.75 0.33333333 0.41666667 0.16666667
0.75 0.5 0. 0.5 ]
mean value: 0.4083333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.2 0.5 0.4 0.25 0.2
0.66666667 0.5 0. 0.33333333]
mean value: 0.33
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.39
MCC on Training: -0.18
Running classifier: 18
Model_name: Random Forest
Model func: RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(n_estimators=1000, n_jobs=12,
random_state=42))])
key: fit_time
value: [0.6046989 0.5468781 0.5721488 0.52542901 0.56998491 0.55421329
0.53914094 0.54499841 0.56526446 0.5692544 ]
mean value: 0.5592011213302612
key: score_time
value: [0.11945629 0.18391323 0.1769104 0.14987516 0.16597605 0.19020319
0.15206194 0.1613009 0.19221568 0.15517879]
mean value: 0.16470916271209718
key: test_mcc
value: [0.16666667 0. 1. 0.16666667 0.61237244 0.40824829
0. 0. 1. 0.57735027]
mean value: 0.39313043286826166
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 1. 0.66666667 0.85714286 0.5
0.66666667 0.66666667 1. 0.66666667]
mean value: 0.6523809523809525
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 1. 0.66666667 0.75 1.
0.5 0.5 1. 1. ]
mean value: 0.6916666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.7
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.6 1. 0.6 0.8 0.6 0.5 0.5 1. 0.75]
mean value: 0.695
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.5 1. 0.58333333 0.75 0.66666667
0.5 0.5 1. 0.75 ]
mean value: 0.6833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 1. 0.5 0.75 0.33333333
0.5 0.5 1. 0.5 ]
mean value: 0.5416666666666666
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.3
MCC on Training: 0.39
Running classifier: 19
Model_name: Random Forest2
Model func: RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...age_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12,
oob_score=True, random_state=42))])
key: fit_time
value: [0.83173156 0.87211442 0.86492038 0.81923556 0.89267898 0.93334937
0.88286328 0.85631347 0.8562398 0.84969449]
mean value: 0.8659141302108765
key: score_time
value: [0.19917798 0.18953228 0.17793465 0.16570473 0.18589878 0.21631145
0.18925476 0.2202661 0.18394113 0.17896175]
mean value: 0.19069836139678956
key: test_mcc
value: [0.16666667 0.61237244 0.66666667 0.16666667 1. 0.40824829
0. 0. 0.57735027 0.57735027]
mean value: 0.41753212645389093
key: train_mcc
value: [0.8047619 0.90692382 0.8047619 0.90238095 0.8047619 0.8047619
0.80952381 0.85811633 0.80952381 0.80952381]
mean value: 0.8315040154305618
key: test_fscore
value: [0.5 0.66666667 0.8 0.66666667 1. 0.5
0.66666667 0.66666667 0.8 0.66666667]
mean value: 0.6933333333333334
key: train_fscore
value: [0.9047619 0.95 0.9047619 0.95 0.9 0.9
0.9047619 0.92682927 0.9047619 0.9047619 ]
mean value: 0.9150638792102207
key: test_precision
value: [0.5 1. 0.66666667 0.66666667 1. 1.
0.5 0.5 0.66666667 1. ]
mean value: 0.75
key: train_precision
value: [0.9047619 1. 0.9047619 0.95 0.9 0.9 0.9047619
0.95 0.9047619 0.9047619]
mean value: 0.9223809523809525
key: test_recall
value: [0.5 0.5 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.75
key: train_recall
value: [0.9047619 0.9047619 0.9047619 0.95 0.9 0.9 0.9047619
0.9047619 0.9047619 0.9047619]
mean value: 0.9083333333333334
key: test_accuracy
value: [0.6 0.8 0.8 0.6 1. 0.6 0.5 0.5 0.75 0.75]
mean value: 0.6900000000000001
key: train_accuracy
value: [0.90243902 0.95121951 0.90243902 0.95121951 0.90243902 0.90243902
0.9047619 0.92857143 0.9047619 0.9047619 ]
mean value: 0.9155052264808363
key: test_roc_auc
value: [0.58333333 0.75 0.83333333 0.58333333 1. 0.66666667
0.5 0.5 0.75 0.75 ]
mean value: 0.6916666666666667
key: train_roc_auc
value: [0.90238095 0.95238095 0.90238095 0.95119048 0.90238095 0.90238095
0.9047619 0.92857143 0.9047619 0.9047619 ]
mean value: 0.915595238095238
key: test_jcc
value: [0.33333333 0.5 0.66666667 0.5 1. 0.33333333
0.5 0.5 0.66666667 0.5 ]
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
mean value: 0.55
key: train_jcc
value: [0.82608696 0.9047619 0.82608696 0.9047619 0.81818182 0.81818182
0.82608696 0.86363636 0.82608696 0.82608696]
mean value: 0.8439958592132506
MCC on Blind test: -0.05
MCC on Training: 0.42
Running classifier: 20
Model_name: Ridge Classifier
Model func: RidgeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifier(random_state=42))])
key: fit_time
value: [0.00993299 0.01000404 0.00990272 0.00939608 0.00977564 0.00943708
0.00933385 0.00914884 0.00901127 0.00894332]
mean value: 0.009488582611083984
key: score_time
value: [0.00900126 0.00870061 0.00940204 0.00922155 0.00895357 0.00903201
0.00875378 0.00931644 0.00902128 0.00850487]
mean value: 0.008990740776062012
key: test_mcc
value: [-0.40824829 -0.16666667 0.16666667 -0.16666667 0.66666667 0.40824829
1. 0. 1. 0. ]
mean value: 0.25
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0. 0.4 0.5 0.4 0.8 0.5
1. 0.66666667 1. 0.66666667]
mean value: 0.5933333333333334
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0. 0.33333333 0.5 0.5 1. 1.
1. 0.5 1. 0.5 ]
mean value: 0.6333333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0. 0.5 0.5 0.33333333 0.66666667 0.33333333
1. 1. 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.6 0.4 0.8 0.6 1. 0.5 1. 0.5]
mean value: 0.62
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.33333333 0.41666667 0.58333333 0.41666667 0.83333333 0.66666667
1. 0.5 1. 0.5 ]
mean value: 0.625
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0. 0.25 0.33333333 0.25 0.66666667 0.33333333
1. 0.5 1. 0.5 ]
mean value: 0.4833333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.31
MCC on Training: 0.25
Running classifier: 21
Model_name: Ridge ClassifierCV
Model func: RidgeClassifierCV(cv=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifierCV(cv=3))])
key: fit_time
value: [0.02450752 0.0244503 0.02426744 0.02479362 0.02454066 0.02436495
0.02435231 0.02432179 0.02435064 0.02467346]
mean value: 0.024462270736694335
key: score_time
value: [0.00837088 0.00856066 0.00850224 0.00854135 0.00844646 0.00846434
0.00847292 0.00845075 0.0084188 0.00848889]
mean value: 0.00847172737121582
key: test_mcc
value: [-0.66666667 -0.16666667 0.16666667 -0.16666667 0.61237244 0.40824829
1. 0. 1. 0. ]
mean value: 0.21872873928263248
key: train_mcc
value: [0.85441771 1. 1. 1. 0.85441771 1.
1. 1. 1. 1. ]
mean value: 0.9708835415718322
key: test_fscore
value: [0. 0.4 0.5 0.4 0.85714286 0.5
1. 0.66666667 1. 0.66666667]
mean value: 0.599047619047619
key: train_fscore
value: [0.93023256 1. 1. 1. 0.92307692 1.
1. 1. 1. 1. ]
mean value: 0.9853309481216458
key: test_precision
value: [0. 0.33333333 0.5 0.5 0.75 1.
1. 0.5 1. 0.5 ]
mean value: 0.6083333333333333
key: train_precision
value: [0.90909091 1. 1. 1. 0.94736842 1.
1. 1. 1. 1. ]
mean value: 0.985645933014354
key: test_recall
value: [0. 0.5 0.5 0.33333333 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.6666666666666666
key: train_recall
value: [0.95238095 1. 1. 1. 0.9 1.
1. 1. 1. 1. ]
mean value: 0.9852380952380952
key: test_accuracy
value: [0.2 0.4 0.6 0.4 0.8 0.6 1. 0.5 1. 0.5]
mean value: 0.6
key: train_accuracy
value: [0.92682927 1. 1. 1. 0.92682927 1.
1. 1. 1. 1. ]
mean value: 0.9853658536585366
key: test_roc_auc
value: [0.16666667 0.41666667 0.58333333 0.41666667 0.75 0.66666667
1. 0.5 1. 0.5 ]
mean value: 0.6
key: train_roc_auc
value: [0.92619048 1. 1. 1. 0.92619048 1.
1. 1. 1. 1. ]
mean value: 0.9852380952380952
key: test_jcc
value: [0. 0.25 0.33333333 0.25 0.75 0.33333333
1. 0.5 1. 0.5 ]
mean value: 0.4916666666666666
key: train_jcc
value: [0.86956522 1. 1. 1. 0.85714286 1.
1. 1. 1. 1. ]
mean value: 0.9726708074534163
MCC on Blind test: -0.31
MCC on Training: 0.22
Running classifier: 22
Model_name: SVC
Model func: SVC(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SVC(random_state=42))])
key: fit_time
value: [0.00820303 0.00800443 0.00808978 0.00802493 0.00798249 0.00805926
0.00806236 0.00807571 0.00816321 0.00828719]
mean value: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
0.008095240592956543
key: score_time
value: [0.00824666 0.00841951 0.00829244 0.0082736 0.00825191 0.00831676
0.00824118 0.008219 0.00826025 0.00825834]
mean value: 0.008277964591979981
key: test_mcc
value: [-0.40824829 -0.61237244 0.16666667 -0.16666667 0.66666667 0.
0. -0.57735027 0. 0.57735027]
mean value: -0.035395405949299096
key: train_mcc
value: [0.7565654 0.8047619 0.65952381 0.7633652 0.7565654 0.7565654
0.71428571 0.67357531 0.66742381 0.76277007]
mean value: 0.73154020250403
key: test_fscore
value: [0. 0.33333333 0.5 0.4 0.8 0.
0.66666667 0.4 0.5 0.66666667]
mean value: 0.42666666666666664
key: train_fscore
value: [0.88372093 0.9047619 0.82926829 0.86486486 0.87179487 0.87179487
0.85714286 0.82051282 0.8372093 0.88372093]
mean value: 0.8624791646345814
key: test_precision
value: [0. 0.25 0.5 0.5 1. 0.
0.5 0.33333333 0.5 1. ]
mean value: 0.4583333333333333
key: train_precision
value: [0.86363636 0.9047619 0.85 0.94117647 0.89473684 0.89473684
0.85714286 0.88888889 0.81818182 0.86363636]
mean value: 0.8776898351046958
key: test_recall
value: [0. 0.5 0.5 0.33333333 0.66666667 0.
1. 0.5 0.5 0.5 ]
mean value: 0.45
key: train_recall
value: [0.9047619 0.9047619 0.80952381 0.8 0.85 0.85
0.85714286 0.76190476 0.85714286 0.9047619 ]
mean value: 0.85
key: test_accuracy
value: [0.4 0.2 0.6 0.4 0.8 0.4 0.5 0.25 0.5 0.75]
mean value: 0.4800000000000001
key: train_accuracy
value: [0.87804878 0.90243902 0.82926829 0.87804878 0.87804878 0.87804878
0.85714286 0.83333333 0.83333333 0.88095238]
mean value: 0.8648664343786294
key: test_roc_auc
value: [0.33333333 0.25 0.58333333 0.41666667 0.83333333 0.5
0.5 0.25 0.5 0.75 ]
mean value: 0.4916666666666666
key: train_roc_auc
value: [0.87738095 0.90238095 0.8297619 0.87619048 0.87738095 0.87738095
0.85714286 0.83333333 0.83333333 0.88095238]
mean value: 0.8645238095238096
key: test_jcc
value: [0. 0.2 0.33333333 0.25 0.66666667 0.
0.5 0.25 0.33333333 0.5 ]
mean value: 0.30333333333333334
key: train_jcc
value: [0.79166667 0.82608696 0.70833333 0.76190476 0.77272727 0.77272727
0.75 0.69565217 0.72 0.79166667]
mean value: 0.7590765104460757
MCC on Blind test: 0.12
MCC on Training: -0.04
Running classifier: 23
Model_name: Stochastic GDescent
Model func: SGDClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SGDClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00881124 0.00913858 0.00944018 0.0088892 0.00848913 0.00884056
0.00910306 0.00832677 0.00881267 0.00922275]
mean value: 0.008907413482666016
key: score_time
value: [0.00928545 0.00922966 0.00934339 0.0086813 0.00818038 0.00930667
0.00825071 0.00884247 0.00897217 0.00909185]
mean value: 0.008918404579162598
key: test_mcc
value: [-0.66666667 0.16666667 0. 0.16666667 -0.16666667 0.
1. 0. 0.57735027 0. ]
mean value: 0.10773502691896257
key: train_mcc
value: [1. 0.95238095 0.59093684 0.90649828 0.90238095 0.73786479
0.81322028 1. 0.90889326 0.90889326]
mean value: 0.8721068614545577
key: test_fscore
value: [0. 0.5 0. 0.66666667 0.4 0.
1. 0.66666667 0.66666667 0.66666667]
mean value: 0.45666666666666667
key: train_fscore
value: [1. 0.97560976 0.6875 0.94736842 0.95 0.82352941
0.9 1. 0.95 0.95 ]
mean value: 0.9184007588914896
key: test_precision
value: [0. 0.5 0. 0.66666667 0.5 0.
1. 0.5 1. 0.5 ]
mean value: 0.4666666666666666
key: train_precision
value: [1. 1. 1. 1. 0.95 1.
0.94736842 1. 1. 1. ]
mean value: 0.9897368421052631
key: test_recall
value: [0. 0.5 0. 0.66666667 0.33333333 0.
1. 1. 0.5 1. ]
mean value: 0.5
key: train_recall
value: [1. 0.95238095 0.52380952 0.9 0.95 0.7
0.85714286 1. 0.9047619 0.9047619 ]
mean value: 0.8692857142857143
key: test_accuracy
value: [0.2 0.6 0.6 0.6 0.4 0.4 1. 0.5 0.75 0.5 ]
mean value: 0.5549999999999999
key: train_accuracy
value: [1. 0.97560976 0.75609756 0.95121951 0.95121951 0.85365854
0.9047619 1. 0.95238095 0.95238095]
mean value: 0.9297328687572589
key: test_roc_auc
value: [0.16666667 0.58333333 0.5 0.58333333 0.41666667 0.5
1. 0.5 0.75 0.5 ]
mean value: 0.55
key: train_roc_auc
value: [1. 0.97619048 0.76190476 0.95 0.95119048 0.85
0.9047619 1. 0.95238095 0.95238095]
mean value: 0.9298809523809524
key: test_jcc
value: [0. 0.33333333 0. 0.5 0.25 0.
1. 0.5 0.5 0.5 ]
mean value: 0.3583333333333333
key: train_jcc
value: [1. 0.95238095 0.52380952 0.9 0.9047619 0.7
0.81818182 1. 0.9047619 0.9047619 ]
mean value: 0.860865800865801
MCC on Blind test: 0.15
MCC on Training: 0.11
Running classifier: 24
Model_name: XGBoost
Model func: XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0)
Running model pipeline: /home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:427: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_CV['source_data'] = 'CV'
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:454: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_BT['source_data'] = 'BT'
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...
interaction_constraints=None, learning_rate=None,
max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan,
monotone_constraints=None, n_estimators=100,
n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None,
reg_lambda=None, scale_pos_weight=None,
subsample=None, tree_method=None,
use_label_encoder=False,
validate_parameters=None, verbosity=0))])
key: fit_time
value: [0.03750682 0.03452182 0.03570294 0.03578782 0.03548884 0.03390956
0.03578544 0.03628993 0.03644991 0.0362761 ]
mean value: 0.03577191829681396
key: score_time
value: [0.01046443 0.01038051 0.01065159 0.01118374 0.01060486 0.01112819
0.01139307 0.01042986 0.01071906 0.01041365]
mean value: 0.010736894607543946
key: test_mcc
value: [ 0.61237244 0.16666667 1. -0.16666667 0.16666667 0.40824829
0.57735027 -0.57735027 1. 1. ]
mean value: 0.4187287392826324
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.66666667 0.5 1. 0.4 0.66666667 0.5
0.8 0.4 1. 1. ]
mean value: 0.6933333333333334
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [1. 0.5 1. 0.5 0.66666667 1.
0.66666667 0.33333333 1. 1. ]
mean value: 0.7666666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 0.66666667 0.33333333
1. 0.5 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.8 0.6 1. 0.4 0.6 0.6 0.75 0.25 1. 1. ]
mean value: 0.7
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.75 0.58333333 1. 0.41666667 0.58333333 0.66666667
0.75 0.25 1. 1. ]
mean value: 0.7
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.5 0.33333333 1. 0.25 0.5 0.33333333
0.66666667 0.25 1. 1. ]
mean value: 0.5833333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.22
MCC on Training: 0.42
Extracting tts_split_name: 70_30
Total cols in each df:
CV df: 8
metaDF: 15
Adding column: Model_name
Total cols in bts df:
BT_df: 8
First proceeding to rowbind CV and BT dfs:
Final output should have: 23 columns
Combinig 2 using pd.concat by row ~ rowbind
Checking Dims of df to combine:
Dim of CV: (24, 8)
Dim of BT: (24, 8)
8
Number of Common columns: 8
These are: ['MCC', 'ROC_AUC', 'Accuracy', 'Precision', 'JCC', 'F1', 'source_data', 'Recall']
Concatenating dfs with different resampling methods [WF]:
Split type: 70_30
No. of dfs combining: 2
PASS: 2 dfs successfully combined
nrows in combined_df_wf: 48
ncols in combined_df_wf: 8
PASS: proceeding to merge metadata with CV and BT dfs
Adding column: Model_name
=========================================================
SUCCESS: Ran multiple classifiers
=======================================================
==============================================================
Running several classification models (n): 24
List of models:
('AdaBoost Classifier', AdaBoostClassifier(random_state=42))
('Bagging Classifier', BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3))
('Decision Tree', DecisionTreeClassifier(random_state=42))
('Extra Tree', ExtraTreeClassifier(random_state=42))
('Extra Trees', ExtraTreesClassifier(random_state=42))
('Gradient Boosting', GradientBoostingClassifier(random_state=42))
('Gaussian NB', GaussianNB())
('Gaussian Process', GaussianProcessClassifier(random_state=42))
('K-Nearest Neighbors', KNeighborsClassifier())
('LDA', LinearDiscriminantAnalysis())
('Logistic Regression', LogisticRegression(random_state=42))
('Logistic RegressionCV', LogisticRegressionCV(cv=3, random_state=42))
('MLP', MLPClassifier(max_iter=500, random_state=42))
('Multinomial', MultinomialNB())
('Naive Bayes', BernoulliNB())
('Passive Aggresive', PassiveAggressiveClassifier(n_jobs=12, random_state=42))
('QDA', QuadraticDiscriminantAnalysis())
('Random Forest', RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42))
('Random Forest2', RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42))
('Ridge Classifier', RidgeClassifier(random_state=42))
('Ridge ClassifierCV', RidgeClassifierCV(cv=3))
('SVC', SVC(random_state=42))
('Stochastic GDescent', SGDClassifier(n_jobs=12, random_state=42))
('XGBoost', XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0))
================================================================
Running classifier: 1
Model_name: AdaBoost Classifier
Model func: AdaBoostClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', AdaBoostClassifier(random_state=42))])
key: fit_time
value: [0.07621503 0.07360363 0.07417893 0.07430983 0.07171845 0.07407093
0.07249784 0.06705332 0.068156 0.0687573 ]
mean value: 0.07205612659454345
key: score_time
value: [0.01585674 0.0160594 0.01581192 0.0159893 0.01554942 0.01597142
0.01444983 0.01414967 0.01507425 0.01533413]
mean value: 0.015424609184265137
key: test_mcc
value: [-0.61237244 0.16666667 0.66666667 0.40824829 1. -0.16666667
0.57735027 0.57735027 0.57735027 0.57735027]
mean value: 0.3771943598193238
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: [Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.1s remaining: 0.2s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.1s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.1s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.4s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.2s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.3s remaining: 0.5s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.3s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.3s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend ThreadingBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.1s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
[Parallel(n_jobs=12)]: Using backend LokyBackend with 12 concurrent workers.
[Parallel(n_jobs=12)]: Done 4 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 9 out of 12 | elapsed: 0.0s remaining: 0.0s
[Parallel(n_jobs=12)]: Done 12 out of 12 | elapsed: 0.0s finished
test_fscore
value: [0.33333333 0.5 0.8 0.5 1. 0.4
0.8 0.8 0.8 0.8 ]
mean value: 0.6733333333333332
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.25 0.5 0.66666667 1. 1. 0.5
0.66666667 0.66666667 0.66666667 0.66666667]
mean value: 0.6583333333333334
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.33333333 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.7666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.2 0.6 0.8 0.6 1. 0.4 0.75 0.75 0.75 0.75]
mean value: 0.6599999999999999
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.25 0.58333333 0.83333333 0.66666667 1. 0.41666667
0.75 0.75 0.75 0.75 ]
mean value: 0.675
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.2 0.33333333 0.66666667 0.33333333 1. 0.25
0.66666667 0.66666667 0.66666667 0.66666667]
mean value: 0.545
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.03
MCC on Training: 0.38
Running classifier: 2
Model_name: Bagging Classifier
Model func: BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True, random_state=42,
verbose=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
BaggingClassifier(n_estimators=100, n_jobs=12, oob_score=True,
random_state=42, verbose=3))])
key: fit_time
value: [0.10585761 0.10880518 0.11610079 0.11265016 0.11422777 0.109828
0.12987709 0.12740016 0.10178447 0.17598081]
mean value: 0.12025120258331298
key: score_time
value: [0.04848433 0.05669498 0.06805182 0.0736239 0.04690218 0.07367539
0.07672715 0.03672194 0.07234097 0.07809186]
mean value: 0.06313145160675049
key: test_mcc
value: [-0.61237244 0.16666667 0.66666667 0.16666667 0.16666667 -0.16666667
0.57735027 0.57735027 0.57735027 1. ]
mean value: 0.3119678371873083
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.33333333 0.5 0.8 0.66666667 0.66666667 0.4
0.8 0.66666667 0.8 1. ]
mean value: 0.6633333333333333
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.25 0.5 0.66666667 0.66666667 0.66666667 0.5
0.66666667 1. 0.66666667 1. ]
mean value: 0.6583333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
1. 0.5 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.2 0.6 0.8 0.6 0.6 0.4 0.75 0.75 0.75 1. ]
mean value: 0.645
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.25 0.58333333 0.83333333 0.58333333 0.58333333 0.41666667
0.75 0.75 0.75 1. ]
mean value: 0.65
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.2 0.33333333 0.66666667 0.5 0.5 0.25
0.66666667 0.5 0.66666667 1. ]
mean value: 0.5283333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.23
MCC on Training: 0.31
Running classifier: 3
Model_name: Decision Tree
Model func: DecisionTreeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', DecisionTreeClassifier(random_state=42))])
key: fit_time
value: [0.02258229 0.00880694 0.00900722 0.00884438 0.00875759 0.00896645
0.00875711 0.00936079 0.0086937 0.00957966]
mean value: 0.010335612297058105
key: score_time
value: [0.00884223 0.00870609 0.00825596 0.00897503 0.00818658 0.00845528
0.00824118 0.00823307 0.00876999 0.00825143]
mean value: 0.00849168300628662
key: test_mcc
value: [-0.61237244 0.61237244 0.66666667 0.66666667 0.66666667 -0.16666667
0.57735027 0.57735027 0. 0.57735027]
mean value: 0.3565384140902211
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.33333333 0.66666667 0.8 0.8 0.8 0.4
0.8 0.66666667 0.5 0.8 ]
mean value: 0.6566666666666667
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.25 1. 0.66666667 1. 1. 0.5
0.66666667 1. 0.5 0.66666667]
mean value: 0.725
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
1. 0.5 0.5 1. ]
mean value: 0.6666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.2 0.8 0.8 0.8 0.8 0.4 0.75 0.75 0.5 0.75]
mean value: 0.655
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.25 0.75 0.83333333 0.83333333 0.83333333 0.41666667
0.75 0.75 0.5 0.75 ]
mean value: 0.6666666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.2 0.5 0.66666667 0.66666667 0.66666667 0.25
0.66666667 0.5 0.33333333 0.66666667]
mean value: 0.5116666666666666
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.21
MCC on Training: 0.36
Running classifier: 4
Model_name: Extra Tree
Model func: ExtraTreeClassifier(random_state=42)
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreeClassifier(random_state=42))])
key: fit_time
value: [0.010041 0.00920272 0.00931287 0.00932002 0.00854254 0.00927401
0.00925541 0.0091722 0.00911927 0.0091598 ]
mean value: 0.009239983558654786
key: score_time
value: [0.00951338 0.00924969 0.0091536 0.00929809 0.00920486 0.00916767
0.00916123 0.00914097 0.00921082 0.00898218]
mean value: 0.009208250045776366
key: test_mcc
value: [-0.16666667 -0.40824829 1. -0.40824829 0.16666667 -0.40824829
1. 0. -0.57735027 0. ]
mean value: 0.01979048594187849
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0. 1. 0.57142857 0.66666667 0.57142857
1. 0. 0.4 0.5 ]
mean value: 0.510952380952381
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0. 1. 0.5 0.66666667 0.5
1. 0. 0.33333333 0.5 ]
mean value: 0.4833333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 0.66666667 0.66666667
1. 0. 0.5 0.5 ]
mean value: 0.55
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 1. 0.4 0.6 0.4 1. 0.5 0.25 0.5 ]
mean value: 0.545
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.33333333 1. 0.33333333 0.58333333 0.33333333
1. 0.5 0.25 0.5 ]
mean value: 0.525
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0. 1. 0.4 0.5 0.4
1. 0. 0.25 0.33333333]
mean value: 0.4133333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.14
MCC on Training: 0.02
Running classifier: 5
Model_name: Extra Trees
Model func: ExtraTreesClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', ExtraTreesClassifier(random_state=42))])
key: fit_time
value: [0.0820632 0.07688308 0.07963014 0.07842422 0.07723594 0.07713103
0.08013487 0.07813239 0.07798409 0.0784924 ]
mean value: 0.07861113548278809
key: score_time
value: [0.01680231 0.01802921 0.01681995 0.01691961 0.01716518 0.01819587
0.01705599 0.01786733 0.0177505 0.0167017 ]
mean value: 0.01733076572418213
key: test_mcc
value: [ 0.16666667 0. 0.66666667 0.16666667 1. -0.66666667
0. 0.57735027 0.57735027 0. ]
mean value: 0.2488033871712585
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 0.8 0.66666667 1. 0.33333333
0.5 0.66666667 0.8 0.5 ]
mean value: 0.5766666666666667
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 0.66666667 0.66666667 1. 0.33333333
0.5 1. 0.66666667 0.5 ]
mean value: 0.5833333333333333
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 0.5 1. 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.6 0.8 0.6 1. 0.2 0.5 0.75 0.75 0.5 ]
mean value: 0.63
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.5 0.83333333 0.58333333 1. 0.16666667
0.5 0.75 0.75 0.5 ]
mean value: 0.6166666666666667
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 0.66666667 0.5 1. 0.2
0.33333333 0.5 0.66666667 0.33333333]
mean value: 0.4533333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.15
MCC on Training: 0.25
Running classifier: 6
Model_name: Gradient Boosting
Model func: GradientBoostingClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GradientBoostingClassifier(random_state=42))])
key: fit_time
value: [0.12404656 0.11600733 0.11816883 0.12366486 0.11906648 0.10522175
0.10942721 0.12072515 0.11076951 0.12015915]
mean value: 0.11672568321228027
key: score_time
value: [0.00864172 0.00862288 0.0088222 0.00874257 0.00877643 0.00863934
0.0090692 0.00877285 0.00887442 0.008744 ]
mean value: 0.008770561218261719
key: test_mcc
value: [-0.16666667 0.61237244 1. 0.66666667 0.66666667 0.40824829
0.57735027 0.57735027 0.57735027 0. ]
mean value: 0.49193382003952024
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.66666667 1. 0.8 0.8 0.5
0.8 0.66666667 0.8 0.5 ]
mean value: 0.6933333333333332
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 1. 1. 1. 1. 1.
0.66666667 1. 0.66666667 0.5 ]
mean value: 0.8166666666666668
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
1. 0.5 1. 0.5 ]
mean value: 0.6666666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.8 1. 0.8 0.8 0.6 0.75 0.75 0.75 0.5 ]
mean value: 0.7150000000000001
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.75 1. 0.83333333 0.83333333 0.66666667
0.75 0.75 0.75 0.5 ]
mean value: 0.725
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.5 1. 0.66666667 0.66666667 0.33333333
0.66666667 0.5 0.66666667 0.33333333]
mean value: 0.5583333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.48
MCC on Training: 0.49
Running classifier: 7
Model_name: Gaussian NB
Model func: GaussianNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianNB())])
key: fit_time
value: [0.00915074 0.00822377 0.00828218 0.0084331 0.0093925 0.0093267
0.00845575 0.00869799 0.00905776 0.00892186]
mean value: 0.008794236183166503
key: score_time
value: [0.00872087 0.00841856 0.00854039 0.00893021 0.0093658 0.00918722
0.00909758 0.00853658 0.00864816 0.00879574]
mean value: 0.00882411003112793
key: test_mcc
value: [-0.61237244 0.66666667 0.66666667 0.61237244 0. -0.16666667
0.57735027 0.57735027 0. 0.57735027]
mean value: 0.2898717474235544
key: train_mcc
value: [0.61969655 0.5519099 0.48849265 0.59093684 0.58066054 0.63994524
0.60609153 0.52704628 0.58834841 0.52704628]
mean value: 0.5720174209906098
key: test_fscore
value: [0.33333333 0.8 0.8 0.85714286 0.75 0.4
0.8 0.8 0.66666667 0.8 ]
mean value: 0.7007142857142857
key: train_fscore
value: [0.82608696 0.8 0.7755102 0.8 0.8 0.82608696
0.81632653 0.78431373 0.80851064 0.78431373]
mean value: 0.802114873701562
key: test_precision
value: [0.25 0.66666667 0.66666667 0.75 0.6 0.5
0.66666667 0.66666667 0.5 0.66666667]
mean value: 0.5933333333333334
key: train_precision
value: [0.76 0.68965517 0.67857143 0.66666667 0.72 0.73076923
0.71428571 0.66666667 0.73076923 0.66666667]
mean value: 0.7024050776809398
key: test_recall
value: [0.5 1. 1. 1. 1. 0.33333333
1. 1. 1. 1. ]
mean value: 0.8833333333333332
key: train_recall
value: [0.9047619 0.95238095 0.9047619 1. 0.9 0.95
0.95238095 0.95238095 0.9047619 0.95238095]
mean value: 0.9373809523809523
key: test_accuracy
value: [0.2 0.8 0.8 0.8 0.6 0.4 0.75 0.75 0.5 0.75]
mean value: 0.635
key: train_accuracy
value: [0.80487805 0.75609756 0.73170732 0.75609756 0.7804878 0.80487805
0.78571429 0.73809524 0.78571429 0.73809524]
mean value: 0.7681765389082462
key: test_roc_auc
value: [0.25 0.83333333 0.83333333 0.75 0.5 0.41666667
0.75 0.75 0.5 0.75 ]
mean value: 0.6333333333333334
key: train_roc_auc
value: [0.80238095 0.75119048 0.72738095 0.76190476 0.78333333 0.80833333
0.78571429 0.73809524 0.78571429 0.73809524]
mean value: 0.7682142857142857
key: test_jcc
value: [0.2 0.66666667 0.66666667 0.75 0.6 0.25
0.66666667 0.66666667 0.5 0.66666667]
mean value: 0.5633333333333334
key: train_jcc
value: [0.7037037 0.66666667 0.63333333 0.66666667 0.66666667 0.7037037
0.68965517 0.64516129 0.67857143 0.64516129]
mean value: 0.6699289922371123
MCC on Blind test: -0.03
MCC on Training: 0.29
Running classifier: 8
Model_name: Gaussian Process
Model func: GaussianProcessClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', GaussianProcessClassifier(random_state=42))])
key: fit_time
value: [0.0100069 0.00988388 0.00976467 0.01003194 0.0100348 0.01075625
0.01098824 0.01043177 0.0102098 0.00995898]
mean value: 0.0102067232131958
key: score_time
value: [0.00851536 0.00850487 0.00874519 0.00857115 0.00878572 0.00922728
0.00910878 0.00863576 0.00853658 0.00946045]
mean value: 0.008809113502502441
key: test_mcc
value: [ 0.16666667 -0.40824829 1. -0.40824829 0. -0.66666667
0. 1. 0. 0.57735027]
mean value: 0.12608536882618998
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 1. 0.57142857 0.75 0.33333333
0.5 1. 0.5 0.66666667]
mean value: 0.5821428571428572
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 1. 0.5 0.6 0.33333333
0.5 1. 0.5 1. ]
mean value: 0.5933333333333334
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
0.5 1. 0.5 0.5 ]
mean value: 0.6
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.4 1. 0.4 0.6 0.2 0.5 1. 0.5 0.75]
mean value: 0.595
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.33333333 1. 0.33333333 0.5 0.16666667
0.5 1. 0.5 0.75 ]
mean value: 0.5666666666666667
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 1. 0.4 0.6 0.2
0.33333333 1. 0.33333333 0.5 ]
mean value: 0.4699999999999999
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.04
MCC on Training: 0.13
Running classifier: 9
Model_name: K-Nearest Neighbors
Model func: KNeighborsClassifier()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', KNeighborsClassifier())])
key: fit_time
value: [0.00818205 0.00851893 0.00917649 0.00848556 0.00831485 0.00897002
0.00830007 0.00902057 0.00891423 0.00867987]
mean value: 0.00865626335144043
key: score_time
value: [0.01083255 0.00954747 0.01015925 0.00933123 0.00915051 0.01006079
0.0101018 0.00983715 0.00978494 0.00884175]
mean value: 0.009764742851257325
key: test_mcc
value: [-0.16666667 0.16666667 0.66666667 -0.40824829 -0.40824829 -1.
0. 1. 0.57735027 -0.57735027]
mean value: -0.014982991426105957
key: train_mcc
value: [0.37309549 0.46623254 0.46623254 0.56190476 0.56836003 0.6133669
0.53357838 0.43656413 0.52620136 0.43052839]
mean value: 0.4976064514538302
key: test_fscore
value: [0.4 0.5 0.8 0.57142857 0.57142857 0.
0.5 1. 0.8 0.4 ]
mean value: 0.5542857142857144
key: train_fscore
value: [0.72340426 0.75555556 0.75555556 0.7804878 0.79069767 0.80952381
0.7826087 0.73913043 0.77272727 0.72727273]
mean value: 0.7636963785685505
key: test_precision
value: [0.33333333 0.5 0.66666667 0.5 0.5 0.
0.5 1. 0.66666667 0.33333333]
mean value: 0.5
key: train_precision
value: [0.65384615 0.70833333 0.70833333 0.76190476 0.73913043 0.77272727
0.72 0.68 0.73913043 0.69565217]
mean value: 0.7179057898623116
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
0.5 1. 1. 0.5 ]
mean value: 0.6333333333333333
key: train_recall
value: [0.80952381 0.80952381 0.80952381 0.8 0.85 0.85
0.85714286 0.80952381 0.80952381 0.76190476]
mean value: 0.8166666666666667
key: test_accuracy
value: [0.4 0.6 0.8 0.4 0.4 0. 0.5 1. 0.75 0.25]
mean value: 0.51
key: train_accuracy
value: [0.68292683 0.73170732 0.73170732 0.7804878 0.7804878 0.80487805
0.76190476 0.71428571 0.76190476 0.71428571]
mean value: 0.7464576074332172
key: test_roc_auc
value: [0.41666667 0.58333333 0.83333333 0.33333333 0.33333333 0.
0.5 1. 0.75 0.25 ]
mean value: 0.5
key: train_roc_auc
value: [0.6797619 0.7297619 0.7297619 0.78095238 0.78214286 0.80595238
0.76190476 0.71428571 0.76190476 0.71428571]
mean value: 0.7460714285714285
key: test_jcc
value: [0.25 0.33333333 0.66666667 0.4 0.4 0.
0.33333333 1. 0.66666667 0.25 ]
mean value: 0.43
key: train_jcc
value: [0.56666667 0.60714286 0.60714286 0.64 0.65384615 0.68
0.64285714 0.5862069 0.62962963 0.57142857]
mean value: 0.6184920775265603
MCC on Blind test: 0.21
MCC on Training: -0.01
Running classifier: 10
Model_name: LDA
Model func: LinearDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LinearDiscriminantAnalysis())])
key: fit_time
value: [0.00984979 0.01346278 0.01353693 0.01350045 0.01351118 0.01342678
0.01358747 0.01378918 0.01363397 0.0136826 ]
mean value: 0.013198113441467286
key: score_time
value: [0.01135111 0.01145077 0.01126647 0.0113349 0.01132107 0.01151824
0.01132131 0.01134777 0.01139069 0.01145697]
mean value: 0.011375927925109863
key: test_mcc
value: [-1. 0.66666667 0.66666667 0.66666667 -0.16666667 -0.40824829
0. -0.57735027 0.57735027 -0.57735027]
mean value: -0.015226522632015571
key: train_mcc
value: [1. 0.71121921 0.8547619 0.90238095 0.90238095 0.85441771
0.9047619 0.9047619 0.76277007 0.9047619 ]
mean value: 0.8702216512400438
key: test_fscore
value: [0. 0.8 0.8 0.8 0.4 0.57142857
0.66666667 0. 0.8 0.4 ]
mean value: 0.5238095238095238
key: train_fscore
value: [1. 0.85 0.92682927 0.95 0.95 0.92307692
0.95238095 0.95238095 0.88372093 0.95238095]
mean value: 0.934076997874502
key: test_precision
value: [0. 0.66666667 0.66666667 1. 0.5 0.5
0.5 0. 0.66666667 0.33333333]
mean value: 0.4833333333333333
key: train_precision
value: [1. 0.89473684 0.95 0.95 0.95 0.94736842
0.95238095 0.95238095 0.86363636 0.95238095]
mean value: 0.9412884483937116
key: test_recall
value: [0. 1. 1. 0.66666667 0.33333333 0.66666667
1. 0. 1. 0.5 ]
mean value: 0.6166666666666666
key: train_recall
value: [1. 0.80952381 0.9047619 0.95 0.95 0.9
0.95238095 0.95238095 0.9047619 0.95238095]
mean value: 0.9276190476190477
key: test_accuracy
value: [0. 0.8 0.8 0.8 0.4 0.4 0.5 0.25 0.75 0.25]
mean value: 0.495
key: train_accuracy
value: [1. 0.85365854 0.92682927 0.95121951 0.95121951 0.92682927
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9347851335656214
key: test_roc_auc
value: [0. 0.83333333 0.83333333 0.83333333 0.41666667 0.33333333
0.5 0.25 0.75 0.25 ]
mean value: 0.5
key: train_roc_auc
value: [1. 0.8547619 0.92738095 0.95119048 0.95119048 0.92619048
0.95238095 0.95238095 0.88095238 0.95238095]
mean value: 0.9348809523809523
key: test_jcc
value: [0. 0.66666667 0.66666667 0.66666667 0.25 0.4
0.5 0. 0.66666667 0.25 ]
mean value: 0.4066666666666666
key: train_jcc
value: [1. 0.73913043 0.86363636 0.9047619 0.9047619 0.85714286
0.90909091 0.90909091 0.79166667 0.90909091]
mean value: 0.8788372859025033
MCC on Blind test: -0.3
MCC on Training: -0.02
Running classifier: 11
Model_name: Logistic Regression
Model func: LogisticRegression(random_state=42)
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/linear_model/_logistic.py:444: ConvergenceWarning: lbfgs failed to converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
n_iter_i = _check_optimize_result(
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegression(random_state=42))])
key: fit_time
value: [0.02167916 0.01727057 0.01534629 0.01548314 0.01699781 0.01598907
0.01678061 0.01377487 0.01523089 0.01571107]
mean value: 0.016426348686218263
key: score_time
value: [0.01209736 0.00889635 0.00891614 0.00930095 0.00926661 0.00888228
0.00913954 0.00879836 0.00855303 0.00841308]
mean value: 0.009226369857788085
key: test_mcc
value: [-0.16666667 0.16666667 0.61237244 0.66666667 1. -0.61237244
1. 1. 0. 0.57735027]
mean value: 0.42440169358562924
key: train_mcc
value: [1. 0.95238095 0.8547619 0.95238095 0.90238095 0.90238095
0.85811633 0.85811633 0.95346259 0.85811633]
mean value: 0.9092097294494407
key: test_fscore
value: [0.4 0.5 0.66666667 0.8 1. 0.
1. 1. 0.66666667 0.8 ]
mean value: 0.6833333333333333
key: train_fscore
value: [1. 0.97560976 0.92682927 0.97560976 0.95 0.95
0.92682927 0.92682927 0.97560976 0.92682927]
mean value: 0.9534146341463415
key: test_precision
value: [0.33333333 0.5 1. 1. 1. 0.
1. 1. 0.5 0.66666667]
mean value: 0.7
key: train_precision
value: [1. 1. 0.95 0.95238095 0.95 0.95
0.95 0.95 1. 0.95 ]
mean value: 0.9652380952380952
key: test_recall
value: [0.5 0.5 0.5 0.66666667 1. 0.
1. 1. 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 0.95238095 0.9047619 1. 0.95 0.95
0.9047619 0.9047619 0.95238095 0.9047619 ]
mean value: 0.9423809523809524
key: test_accuracy
value: [0.4 0.6 0.8 0.8 1. 0.2 1. 1. 0.5 0.75]
mean value: 0.7050000000000001
key: train_accuracy
value: [1. 0.97560976 0.92682927 0.97560976 0.95121951 0.95121951
0.92857143 0.92857143 0.97619048 0.92857143]
mean value: 0.954239256678281
key: test_roc_auc
value: [0.41666667 0.58333333 0.75 0.83333333 1. 0.25
1. 1. 0.5 0.75 ]
mean value: 0.7083333333333333
key: train_roc_auc
value: [1. 0.97619048 0.92738095 0.97619048 0.95119048 0.95119048
0.92857143 0.92857143 0.97619048 0.92857143]
mean value: 0.954404761904762
key: test_jcc
value: [0.25 0.33333333 0.5 0.66666667 1. 0.
1. 1. 0.5 0.66666667]
mean value: 0.5916666666666667
key: train_jcc
value: [1. 0.95238095 0.86363636 0.95238095 0.9047619 0.9047619
0.86363636 0.86363636 0.95238095 0.86363636]
mean value: 0.9121212121212121
MCC on Blind test: 0.03
MCC on Training: 0.42
Running classifier: 12
Model_name: Logistic RegressionCV
Model func: LogisticRegressionCV(cv=3, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', LogisticRegressionCV(cv=3, random_state=42))])
key: fit_time
value: [0.15119743 0.17550659 0.1849103 0.17043042 0.17547202 0.18751788
0.18874145 0.18453479 0.16989779 0.18126726]
mean value: 0.17694759368896484
key: score_time
value: [0.00947404 0.00928736 0.00936866 0.00957561 0.00939107 0.0097065
0.00903535 0.00937462 0.00960827 0.0092833 ]
mean value: 0.009410476684570313
key: test_mcc
value: [-0.16666667 -0.16666667 0.61237244 0.16666667 0.66666667 -0.16666667
1. 1. 0. 0.57735027]
mean value: 0.35230560382187537
key: train_mcc
value: [1. 1. 0.75714286 1. 0.95238095 1.
1. 1. 0.76277007 0.80952381]
mean value: 0.9281817690444093
key: test_fscore
value: [0.4 0.4 0.66666667 0.66666667 0.8 0.4
1. 1. 0.66666667 0.8 ]
mean value: 0.68
key: train_fscore
value: [1. 1. 0.87804878 1. 0.97560976 1.
1. 1. 0.87804878 0.9047619 ]
mean value: 0.9636469221835074
key: test_precision
value: [0.33333333 0.33333333 1. 0.66666667 1. 0.5
1. 1. 0.5 0.66666667]
mean value: 0.7
key: train_precision
value: [1. 1. 0.9 1. 0.95238095 1.
1. 1. 0.9 0.9047619 ]
mean value: 0.9657142857142859
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0.66666667 0.33333333
1. 1. 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 1. 0.85714286 1. 1. 1.
1. 1. 0.85714286 0.9047619 ]
mean value: 0.961904761904762
key: test_accuracy
value: [0.4 0.4 0.8 0.6 0.8 0.4 1. 1. 0.5 0.75]
mean value: 0.665
key: train_accuracy
value: [1. 1. 0.87804878 1. 0.97560976 1.
1. 1. 0.88095238 0.9047619 ]
mean value: 0.9639372822299652
key: test_roc_auc
value: [0.41666667 0.41666667 0.75 0.58333333 0.83333333 0.41666667
1. 1. 0.5 0.75 ]
mean value: 0.6666666666666666
key: train_roc_auc
value: [1. 1. 0.87857143 1. 0.97619048 1.
1. 1. 0.88095238 0.9047619 ]
mean value: 0.964047619047619
key: test_jcc
value: [0.25 0.25 0.5 0.5 0.66666667 0.25
1. 1. 0.5 0.66666667]
mean value: 0.5583333333333333
key: train_jcc
value: [1. 1. 0.7826087 1. 0.95238095 1.
1. 1. 0.7826087 0.82608696]
mean value: 0.9343685300207039
MCC on Blind test: -0.07
MCC on Training: 0.35
Running classifier: 13
Model_name: MLP
Model func: MLPClassifier(max_iter=500, random_state=42)
Running model pipeline: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1327: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples. Use `zero_division` parameter to control this behavior.
_warn_prf(average, modifier, msg_start, len(result))
Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MLPClassifier(max_iter=500, random_state=42))])
key: fit_time
value: [0.21241379 0.21670055 0.24280739 0.23050094 0.24434733 0.36418724
0.24961042 0.24872684 0.23138309 0.25354838]
mean value: 0.24942259788513182
key: score_time
value: [0.0118506 0.01177287 0.01247406 0.0120101 0.01199889 0.01177573
0.01179838 0.01185966 0.01180196 0.01221299]
mean value: 0.011955523490905761
key: test_mcc
value: [-0.16666667 -0.16666667 0. 0.16666667 0.40824829 -0.16666667
1. 1. 0. 0.57735027]
mean value: 0.26522652263201557
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.4 0. 0.66666667 0.5 0.4
1. 1. 0.66666667 0.8 ]
mean value: 0.5833333333333334
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0.33333333 0. 0.66666667 1. 0.5
1. 1. 0.5 0.66666667]
mean value: 0.6
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 0. 0.66666667 0.33333333 0.33333333
1. 1. 1. 1. ]
mean value: 0.6333333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.6 0.6 0.6 0.4 1. 1. 0.5 0.75]
mean value: 0.625
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.41666667 0.5 0.58333333 0.66666667 0.41666667
1. 1. 0.5 0.75 ]
mean value: 0.625
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.25 0. 0.5 0.33333333 0.25
1. 1. 0.5 0.66666667]
mean value: 0.475
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.05
MCC on Training: 0.27
Running classifier: 14
Model_name: Multinomial
Model func: MultinomialNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', MultinomialNB())])
key: fit_time
value: [0.01140952 0.01130176 0.00922251 0.00951958 0.00954652 0.00928497
0.00912905 0.00929046 0.00946569 0.00906324]
mean value: 0.009723329544067382
key: score_time
value: [0.01129246 0.01127911 0.00967002 0.00933909 0.00947571 0.0094676
0.00899863 0.00900888 0.00985169 0.0090816 ]
mean value: 0.009746479988098144
key: test_mcc
value: [-0.40824829 0.66666667 0.16666667 0.66666667 0.16666667 -1.
0.57735027 0.57735027 0. 0.57735027]
mean value: 0.1990469183771681
key: train_mcc
value: [0.41487884 0.56086079 0.41487884 0.61152662 0.36718832 0.41428571
0.43052839 0.43052839 0.42857143 0.43052839]
mean value: 0.4503775710325074
key: test_fscore
value: [0. 0.8 0.5 0.8 0.66666667 0.
0.8 0.66666667 0.66666667 0.66666667]
mean value: 0.5566666666666668
key: train_fscore
value: [0.72727273 0.79069767 0.72727273 0.78947368 0.64864865 0.7
0.72727273 0.72727273 0.71428571 0.72727273]
mean value: 0.727946935792713
key: test_precision
value: [0. 0.66666667 0.5 1. 0.66666667 0.
0.66666667 1. 0.5 1. ]
mean value: 0.6
key: train_precision
value: [0.69565217 0.77272727 0.69565217 0.83333333 0.70588235 0.7
0.69565217 0.69565217 0.71428571 0.69565217]
mean value: 0.7204489542852714
key: test_recall
value: [0. 1. 0.5 0.66666667 0.66666667 0.
1. 0.5 1. 0.5 ]
mean value: 0.5833333333333333
key: train_recall
value: [0.76190476 0.80952381 0.76190476 0.75 0.6 0.7
0.76190476 0.76190476 0.71428571 0.76190476]
mean value: 0.7383333333333333
key: test_accuracy
value: [0.4 0.8 0.6 0.8 0.6 0. 0.75 0.75 0.5 0.75]
mean value: 0.595
key: train_accuracy
value: [0.70731707 0.7804878 0.70731707 0.80487805 0.68292683 0.70731707
0.71428571 0.71428571 0.71428571 0.71428571]
mean value: 0.7247386759581882
key: test_roc_auc
value: [0.33333333 0.83333333 0.58333333 0.83333333 0.58333333 0.
0.75 0.75 0.5 0.75 ]
mean value: 0.5916666666666666
key: train_roc_auc
value: [0.70595238 0.7797619 0.70595238 0.80357143 0.68095238 0.70714286
0.71428571 0.71428571 0.71428571 0.71428571]
mean value: 0.724047619047619
key: test_jcc
value: [0. 0.66666667 0.33333333 0.66666667 0.5 0.
0.66666667 0.5 0.5 0.5 ]
mean value: 0.4333333333333333
key: train_jcc
value: [0.57142857 0.65384615 0.57142857 0.65217391 0.48 0.53846154
0.57142857 0.57142857 0.55555556 0.57142857]
mean value: 0.5737180018049582
MCC on Blind test: 0.23
MCC on Training: 0.2
Running classifier: 15
Model_name: Naive Bayes
Model func: BernoulliNB()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', BernoulliNB())])
key: fit_time
value: [0.00921226 0.00931311 0.00936246 0.00890613 0.00910234 0.0093894
0.00952625 0.00883627 0.00905919 0.00919628]
mean value: 0.00919036865234375
key: score_time
value: [0.00950003 0.00875306 0.0090425 0.008811 0.00926733 0.00926375
0.00929689 0.0096004 0.00891113 0.00872374]
mean value: 0.00911698341369629
key: test_mcc
value: [-0.61237244 0.16666667 0.61237244 0.66666667 0. -0.16666667
0. 0. 0.57735027 0. ]
mean value: 0.12440169358562925
key: train_mcc /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
value: [0.71121921 0.8213423 0.6133669 0.77831178 0.63496528 0.86240942
0.62187434 0.78446454 0.78446454 0.78446454]
mean value: 0.739688284295276
key: test_fscore
value: [0.33333333 0.5 0.66666667 0.8 0. 0.4
0.5 0. 0.8 0.5 ]
mean value: 0.45
key: train_fscore
value: [0.85 0.89473684 0.8 0.85714286 0.76470588 0.91891892
0.8 0.86486486 0.86486486 0.86486486]
mean value: 0.8480099095114575
key: test_precision
value: [0.25 0.5 1. 1. 0. 0.5
0.5 0. 0.66666667 0.5 ]
mean value: 0.4916666666666667
key: train_precision
value: [0.89473684 1. 0.84210526 1. 0.92857143 1.
0.84210526 1. 1. 1. ]
mean value: 0.9507518796992482
key: test_recall
value: [0.5 0.5 0.5 0.66666667 0. 0.33333333
0.5 0. 1. 0.5 ]
mean value: 0.45
key: train_recall
value: [0.80952381 0.80952381 0.76190476 0.75 0.65 0.85
0.76190476 0.76190476 0.76190476 0.76190476]
mean value: 0.7678571428571429
key: test_accuracy
value: [0.2 0.6 0.8 0.8 0.4 0.4 0.5 0.5 0.75 0.5 ]
mean value: 0.545
key: train_accuracy
value: [0.85365854 0.90243902 0.80487805 0.87804878 0.80487805 0.92682927
0.80952381 0.88095238 0.88095238 0.88095238]
mean value: 0.8623112659698027
key: test_roc_auc
value: [0.25 0.58333333 0.75 0.83333333 0.5 0.41666667
0.5 0.5 0.75 0.5 ]
mean value: 0.5583333333333333
key: train_roc_auc
value: [0.8547619 0.9047619 0.80595238 0.875 0.80119048 0.925
0.80952381 0.88095238 0.88095238 0.88095238]
mean value: 0.8619047619047621
key: test_jcc
value: [0.2 0.33333333 0.5 0.66666667 0. 0.25
0.33333333 0. 0.66666667 0.33333333]
mean value: 0.3283333333333333
key: train_jcc
value: [0.73913043 0.80952381 0.66666667 0.75 0.61904762 0.85
0.66666667 0.76190476 0.76190476 0.76190476]
mean value: 0.7386749482401657
MCC on Blind test: -0.07
MCC on Training: 0.12
Running classifier: 16
Model_name: Passive Aggresive
Model func: PassiveAggressiveClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
PassiveAggressiveClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00955272 0.00897717 0.0087564 0.00835252 0.00891256 0.0086596
0.00892782 0.00896478 0.00927091 0.00905704]
mean value: 0.00894315242767334
key: score_time
value: [0.00858188 0.00854778 0.00825453 0.00844264 0.00822306 0.00890517
0.0086174 0.00894809 0.00845265 0.00848794]
mean value: 0.008546113967895508
key: test_mcc
value: [-0.16666667 0.16666667 0.66666667 -0.40824829 0.66666667 -0.61237244
0.57735027 1. 0. 0.57735027]
mean value: 0.24674131455529272
key: train_mcc
value: [0.95227002 0.90692382 0.50452498 0.62776482 0.95238095 0.95227002
0.78446454 0.8660254 1. 0.95346259]
mean value: 0.850008713999979
key: test_fscore
value: [0.4 0.5 0.8 0.57142857 0.8 0.
0.8 1. 0.66666667 0.8 ]
mean value: 0.6338095238095238
key: train_fscore
value: [0.97674419 0.95 0.77777778 0.81632653 0.97560976 0.97435897
0.89361702 0.93333333 1. 0.97674419]
mean value: 0.927451176554951
key: test_precision
value: [0.33333333 0.5 0.66666667 0.5 1. 0.
0.66666667 1. 0.5 0.66666667]
mean value: 0.5833333333333333
key: train_precision
value: [0.95454545 1. 0.63636364 0.68965517 0.95238095 1.
0.80769231 0.875 1. 0.95454545]
mean value: 0.88701829779416
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.
1. 1. 1. 1. ]
mean value: 0.7333333333333333
key: train_recall
value: [1. 0.9047619 1. 1. 1. 0.95 1.
1. 1. 1. ]
mean value: 0.9854761904761904
key: test_accuracy
value: [0.4 0.6 0.8 0.4 0.8 0.2 0.75 1. 0.5 0.75]
mean value: 0.62
key: train_accuracy
value: [0.97560976 0.95121951 0.70731707 0.7804878 0.97560976 0.97560976
0.88095238 0.92857143 1. 0.97619048]
mean value: 0.9151567944250871
key: test_roc_auc
value: [0.41666667 0.58333333 0.83333333 0.33333333 0.83333333 0.25
0.75 1. 0.5 0.75 ]
mean value: 0.625
key: train_roc_auc
value: [0.975 0.95238095 0.7 0.78571429 0.97619048 0.975
0.88095238 0.92857143 1. 0.97619048]
mean value: 0.915
key: test_jcc
value: [0.25 0.33333333 0.66666667 0.4 0.66666667 0.
0.66666667 1. 0.5 0.66666667]
mean value: 0.5149999999999999
key: train_jcc
value: [0.95454545 0.9047619 0.63636364 0.68965517 0.95238095 0.95
0.80769231 0.875 1. 0.95454545]
mean value: 0.8724944882703504
MCC on Blind test: -0.05
MCC on Training: 0.25
Running classifier: 17
Model_name: QDA
Model func: QuadraticDiscriminantAnalysis()
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', QuadraticDiscriminantAnalysis())])
key: fit_time
value: [0.0129261 0.00976014 0.00970173 0.00997019 0.00931287 0.00911713
0.00895834 0.00990105 0.01032019 0.00951266]
mean value: 0.009948039054870605
key: score_time
value: [0.00934935 0.00955534 0.00973749 0.00854111 0.00894237 0.00947976
0.00929594 0.00918293 0.00990033 0.00897884]
mean value: 0.009296345710754394
key: test_mcc
value: [ 0. 0.16666667 0.16666667 0.16666667 0.16666667 -0.66666667
-0.57735027 0.57735027 0. 0. ]
mean value: 0.0
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.57142857 0.5 0.5 0.66666667 0.66666667 0.33333333
0.4 0.8 0.5 0.66666667]
mean value: 0.5604761904761906
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.4 0.5 0.5 0.66666667 0.66666667 0.33333333
0.33333333 0.66666667 0.5 0.5 ]
mean value: 0.5066666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [1. 0.5 0.5 0.66666667 0.66666667 0.33333333
0.5 1. 0.5 1. ]
mean value: 0.6666666666666666
key: /home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/discriminant_analysis.py:887: UserWarning: Variables are collinear
warnings.warn("Variables are collinear")
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
/home/tanu/anaconda3/envs/UQ/lib/python3.9/site-packages/sklearn/ensemble/_forest.py:427: FutureWarning: `max_features='auto'` has been deprecated in 1.1 and will be removed in 1.3. To keep the past behaviour, explicitly set `max_features='sqrt'` or remove this parameter as it is also the default value for RandomForestClassifiers and ExtraTreesClassifiers.
warn(
train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.6 0.6 0.6 0.6 0.2 0.25 0.75 0.5 0.5 ]
mean value: 0.5
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.5 0.58333333 0.58333333 0.58333333 0.58333333 0.16666667
0.25 0.75 0.5 0.5 ]
mean value: 0.5
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.4 0.33333333 0.33333333 0.5 0.5 0.2
0.25 0.66666667 0.33333333 0.5 ]
mean value: 0.4016666666666667
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.22
MCC on Training: 0.0
Running classifier: 18
Model_name: Random Forest
Model func: RandomForestClassifier(n_estimators=1000, n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(n_estimators=1000, n_jobs=12,
random_state=42))])
key: fit_time
value: [0.55287409 0.54379725 0.61343741 0.55234051 0.57824874 0.53843427
0.58962297 0.59904552 0.57388043 0.50798321]
mean value: 0.5649664402008057
key: score_time
value: [0.11841536 0.16420984 0.15634918 0.14242959 0.1531136 0.12256479
0.16733861 0.17010379 0.17674661 0.12807941]
mean value: 0.14993507862091066
key: test_mcc
value: [ 0.16666667 -0.40824829 1. -0.40824829 0.61237244 -0.66666667
0.57735027 1. 0. 0.57735027]
mean value: 0.24505763931473198
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.5 0. 1. 0.57142857 0.85714286 0.33333333
0.8 1. 0.66666667 0.66666667]
mean value: 0.6395238095238096
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.5 0. 1. 0.5 0.75 0.33333333
0.66666667 1. 0.5 1. ]
mean value: 0.625
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0. 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.7
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.6 0.4 1. 0.4 0.8 0.2 0.75 1. 0.5 0.75]
mean value: 0.64
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.58333333 0.33333333 1. 0.33333333 0.75 0.16666667
0.75 1. 0.5 0.75 ]
mean value: 0.6166666666666666
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.33333333 0. 1. 0.4 0.75 0.2
0.66666667 1. 0.5 0.5 ]
mean value: 0.5349999999999999
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.22
MCC on Training: 0.25
Running classifier: 19
Model_name: Random Forest2
Model func: RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12, oob_score=True,
random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...age_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model',
RandomForestClassifier(max_features='auto', min_samples_leaf=5,
n_estimators=1000, n_jobs=12,
oob_score=True, random_state=42))])
key: fit_time
value: [0.84869552 0.9469893 0.85308099 0.84434319 0.85773826 0.85807896
0.85562038 0.89091301 0.8702352 0.84725904]
mean value: 0.8672953844070435
key: score_time
value: [0.19435334 0.18948293 0.18052363 0.17982292 0.2137394 0.16985703
0.17996979 0.17333531 0.25137925 0.13845086]
mean value: 0.18709144592285157
key: test_mcc
value: [ 0.16666667 0.61237244 1. 0.16666667 0.61237244 -0.66666667
0.57735027 1. 0. 0.57735027]
mean value: 0.4046112076437508
key: train_mcc
value: [0.8047619 0.90692382 0.8047619 0.90238095 0.85441771 0.90238095
0.85811633 0.85811633 0.81322028 0.80952381]
mean value: 0.8514604000794735
key: test_fscore
value: [0.5 0.66666667 1. 0.66666667 0.85714286 0.33333333
0.8 1. 0.66666667 0.66666667]
mean value: 0.7157142857142857
key: train_fscore
value: [0.9047619 0.95 0.9047619 0.95 0.92307692 0.95
0.93023256 0.92682927 0.9 0.9047619 ]
mean value: 0.9244424463794856
key: test_precision
value: [0.5 1. 1. 0.66666667 0.75 0.33333333
0.66666667 1. 0.5 1. ]
mean value: 0.7416666666666666
key: train_precision
value: [0.9047619 1. 0.9047619 0.95 0.94736842 0.95
0.90909091 0.95 0.94736842 0.9047619 ]
mean value: 0.9368113465481887
key: test_recall
value: [0.5 0.5 1. 0.66666667 1. 0.33333333
1. 1. 1. 0.5 ]
mean value: 0.75
key: train_recall
value: [0.9047619 0.9047619 0.9047619 0.95 0.9 0.95
0.95238095 0.9047619 0.85714286 0.9047619 ]
mean value: 0.9133333333333334
key: test_accuracy
value: [0.6 0.8 1. 0.6 0.8 0.2 0.75 1. 0.5 0.75]
mean value: 0.7
key: train_accuracy
value: [0.90243902 0.95121951 0.90243902 0.95121951 0.92682927 0.95121951
0.92857143 0.92857143 0.9047619 0.9047619 ]
mean value: 0.9252032520325203
key: test_roc_auc
value: [0.58333333 0.75 1. 0.58333333 0.75 0.16666667
0.75 1. 0.5 0.75 ]
mean value: 0.6833333333333333
key: train_roc_auc
value: [0.90238095 0.95238095 0.90238095 0.95119048 0.92619048 0.95119048
0.92857143 0.92857143 0.9047619 0.9047619 ]
mean value: 0.9252380952380953
key: test_jcc
value: [0.33333333 0.5 1. 0.5 0.75 0.2
0.66666667 1. 0.5 0.5 ]
mean value: 0.595
key: train_jcc
value: [0.82608696 0.9047619 0.82608696 0.9047619 0.85714286 0.9047619
0.86956522 0.86363636 0.81818182 0.82608696]
mean value: 0.8601072840203274
MCC on Blind test: -0.13
MCC on Training: 0.4
Running classifier: 20
Model_name: Ridge Classifier
Model func: RidgeClassifier(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifier(random_state=42))])
key: fit_time
value: [0.02401781 0.00959349 0.00884938 0.0091269 0.0089922 0.00978351
0.01024103 0.01020026 0.00907898 0.01002502]
mean value: 0.01099085807800293
key: score_time
value: [0.01877618 0.00848961 0.00889301 0.00845647 0.00908351 0.00914979
0.0093224 0.00906873 0.00942087 0.00936842]
mean value: 0.010002899169921874
key: test_mcc
value: [-0.16666667 -0.16666667 0.61237244 -0.16666667 0.66666667 -0.66666667
1. 1. 0. 0.57735027]
mean value: 0.26897227048854205
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.4 0.66666667 0.4 0.8 0.33333333
1. 1. 0.66666667 0.8 ]
mean value: 0.6466666666666667
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0.33333333 1. 0.5 1. 0.33333333
1. 1. 0.5 0.66666667]
mean value: 0.6666666666666667
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 0.5 0.33333333 0.66666667 0.33333333
1. 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.4 0.8 0.4 0.8 0.2 1. 1. 0.5 0.75]
mean value: 0.625
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.41666667 0.75 0.41666667 0.83333333 0.16666667
1. 1. 0.5 0.75 ]
mean value: 0.625
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.25 0.5 0.25 0.66666667 0.2
1. 1. 0.5 0.66666667]
mean value: 0.5283333333333334
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: -0.31
MCC on Training: 0.27
Running classifier: 21
Model_name: Ridge ClassifierCV
Model func: RidgeClassifierCV(cv=3)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', RidgeClassifierCV(cv=3))])
key: fit_time
value: [0.02835059 0.02416348 0.02409005 0.02419853 0.02421737 0.02447224
0.02423191 0.02439237 0.02421069 0.02482486]
mean value: 0.024715209007263185
key: score_time
value: [0.00838375 0.00844097 0.00840139 0.00842237 0.00849485 0.00844979
0.00832534 0.00857782 0.00840831 0.00849867]
mean value: 0.008440327644348145
key: test_mcc
value: [-0.16666667 -0.16666667 0.61237244 -0.16666667 0.66666667 -0.66666667
1. 1. 0. 0.57735027]
mean value: 0.26897227048854205
key: train_mcc
value: [1. 1. 0.8047619 1. 1. 1.
1. 1. 1. 0.80952381]
mean value: 0.9614285714285714
key: test_fscore
value: [0.4 0.4 0.66666667 0.4 0.8 0.33333333
1. 1. 0.66666667 0.8 ]
mean value: 0.6466666666666667
key: train_fscore
value: [1. 1. 0.9047619 1. 1. 1. 1.
1. 1. 0.9047619]
mean value: 0.980952380952381
key: test_precision
value: [0.33333333 0.33333333 1. 0.5 1. 0.33333333
1. 1. 0.5 0.66666667]
mean value: 0.6666666666666667
key: train_precision
value: [1. 1. 0.9047619 1. 1. 1. 1.
1. 1. 0.9047619]
mean value: 0.980952380952381
key: test_recall
value: [0.5 0.5 0.5 0.33333333 0.66666667 0.33333333
1. 1. 1. 1. ]
mean value: 0.6833333333333333
key: train_recall
value: [1. 1. 0.9047619 1. 1. 1. 1.
1. 1. 0.9047619]
mean value: 0.980952380952381
key: test_accuracy
value: [0.4 0.4 0.8 0.4 0.8 0.2 1. 1. 0.5 0.75]
mean value: 0.625
key: train_accuracy
value: [1. 1. 0.90243902 1. 1. 1.
1. 1. 1. 0.9047619 ]
mean value: 0.9807200929152149
key: test_roc_auc
value: [0.41666667 0.41666667 0.75 0.41666667 0.83333333 0.16666667
1. 1. 0.5 0.75 ]
mean value: 0.625
key: train_roc_auc
value: [1. 1. 0.90238095 1. 1. 1.
1. 1. 1. 0.9047619 ]
mean value: 0.9807142857142856
key: test_jcc
value: [0.25 0.25 0.5 0.25 0.66666667 0.2
1. 1. 0.5 0.66666667]
mean value: 0.5283333333333334
key: train_jcc
value: [1. 1. 0.82608696 1. 1. 1.
1. 1. 1. 0.82608696]
mean value: 0.9652173913043477
MCC on Blind test: -0.31
MCC on Training: 0.27
Running classifier: 22
Model_name: SVC
Model func: SVC(random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SVC(random_state=42))])
key: fit_time
value: [0.008358 0.00831342 0.0082972 0.00830984 0.00820947 0.00865245
0.00870299 0.00864148 0.00915098 0.00915289]
mean value: 0.008578872680664063
key: score_time
value: [0.0083375 0.00837874 0.00833702 0.00835991 0.00863719 0.00874734
0.00867629 0.00871253 0.00896692 0.00917864]
mean value: 0.00863320827484131
key: test_mcc
value: [-0.40824829 0.16666667 0.16666667 0.66666667 0.16666667 -1.
0.57735027 0.57735027 0.57735027 0.57735027]
mean value: 0.20678194529613067
key: train_mcc
value: [0.70714286 0.90692382 0.65952381 0.80817439 0.7098505 0.75714286
0.71428571 0.72760688 0.71428571 0.76980036]
mean value: 0.7474736906738404
key: test_fscore
value: [0. 0.5 0.5 0.8 0.66666667 0.
0.8 0.66666667 0.8 0.66666667]
mean value: 0.54
key: train_fscore
value: [0.85714286 0.95 0.82926829 0.89473684 0.84210526 0.87804878
0.85714286 0.84210526 0.85714286 0.88888889]
mean value: 0.8696581901909244
key: test_precision
value: [0. 0.5 0.5 1. 0.66666667 0.
0.66666667 1. 0.66666667 1. ]
mean value: 0.6
key: train_precision
value: [0.85714286 1. 0.85 0.94444444 0.88888889 0.85714286
0.85714286 0.94117647 0.85714286 0.83333333]
mean value: 0.8886414565826332
key: test_recall
value: [0. 0.5 0.5 0.66666667 0.66666667 0.
1. 0.5 1. 0.5 ]
mean value: 0.5333333333333333
key: train_recall
value: [0.85714286 0.9047619 0.80952381 0.85 0.8 0.9
0.85714286 0.76190476 0.85714286 0.95238095]
mean value: 0.8549999999999999
key: test_accuracy
value: [0.4 0.6 0.6 0.8 0.6 0. 0.75 0.75 0.75 0.75]
mean value: 0.6
key: train_accuracy
value: [0.85365854 0.95121951 0.82926829 0.90243902 0.85365854 0.87804878
0.85714286 0.85714286 0.85714286 0.88095238]
mean value: 0.8720673635307781
key: test_roc_auc
value: [0.33333333 0.58333333 0.58333333 0.83333333 0.58333333 0.
0.75 0.75 0.75 0.75 ]
mean value: 0.5916666666666666
key: train_roc_auc
value: [0.85357143 0.95238095 0.8297619 0.90119048 0.85238095 0.87857143
0.85714286 0.85714286 0.85714286 0.88095238]
mean value: 0.8720238095238096
key: test_jcc
value: [0. 0.33333333 0.33333333 0.66666667 0.5 0.
0.66666667 0.5 0.66666667 0.5 ]
mean value: 0.41666666666666663
key: train_jcc
value: [0.75 0.9047619 0.70833333 0.80952381 0.72727273 0.7826087
0.75 0.72727273 0.75 0.8 ]
mean value: 0.7709773197816676
MCC on Blind test: 0.12
MCC on Training: 0.21
Running classifier: 23
Model_name: Stochastic GDescent
Model func: SGDClassifier(n_jobs=12, random_state=42)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_lineage_proportion', 'lineage_count_all',
'lineage_count_unique'],
dtype='object', length=165)),
('cat', OneHotEncoder(),
Index(['ss_class', 'aa_prop_change', 'electrostatics_change',
'polarity_change', 'water_change', 'active_site'],
dtype='object'))])),
('model', SGDClassifier(n_jobs=12, random_state=42))])
key: fit_time
value: [0.00836658 0.00825715 0.00891399 0.00957584 0.00861096 0.00823355
0.00815821 0.00837421 0.00826669 0.00890207]
mean value: 0.008565926551818847
key: score_time
value: [0.00836182 0.00851631 0.00847912 0.00961375 0.00854182 0.00819373
0.00820446 0.00824189 0.00828218 0.0082612 ]
mean value: 0.008469629287719726
key: test_mcc
value: [-0.16666667 0. 1. 0.66666667 0.66666667 -1.
0. 1. 0.57735027 0.57735027]
mean value: 0.3321367205045918
key: train_mcc
value: [1. 0.23204774 0.62048368 0.95227002 0.95238095 0.80907152
0.2773501 1. 0.90889326 0.90889326]
mean value: 0.7661390523375757
key: test_fscore
value: [0.4 0.57142857 1. 0.8 0.8 0.
0.66666667 1. 0.8 0.8 ]
mean value: 0.6838095238095238
key: train_fscore
value: [1. 0.7 0.82352941 0.97435897 0.97560976 0.9047619
0.7 1. 0.95 0.95454545]
mean value: 0.8982805501528601
key: test_precision
value: [0.33333333 0.4 1. 1. 1. 0.
0.5 1. 0.66666667 0.66666667]
mean value: 0.6566666666666667
key: train_precision
value: [1. 0.53846154 0.7 1. 0.95238095 0.86363636
0.53846154 1. 1. 0.91304348]
mean value: 0.8505983871201263
key: test_recall
value: [0.5 1. 1. 0.66666667 0.66666667 0.
1. 1. 1. 1. ]
mean value: 0.7833333333333333
key: train_recall
value: [1. 1. 1. 0.95 1. 0.95 1.
1. 0.9047619 1. ]
mean value: 0.9804761904761905
key: test_accuracy
value: [0.4 0.4 1. 0.8 0.8 0. 0.5 1. 0.75 0.75]
mean value: 0.64
key: train_accuracy
value: [1. 0.56097561 0.7804878 0.97560976 0.97560976 0.90243902
0.57142857 1. 0.95238095 0.95238095]
mean value: 0.8671312427409988
key: test_roc_auc
value: [0.41666667 0.5 1. 0.83333333 0.83333333 0.
0.5 1. 0.75 0.75 ]
mean value: 0.6583333333333333
key: train_roc_auc
value: [1. 0.55 0.775 0.975 0.97619048 0.90357143
0.57142857 1. 0.95238095 0.95238095]
mean value: 0.865595238095238
key: test_jcc
value: [0.25 0.4 1. 0.66666667 0.66666667 0.
0.5 1. 0.66666667 0.66666667]
mean value: 0.5816666666666667
key: train_jcc
value: [1. 0.53846154 0.7 0.95 0.95238095 0.82608696
0.53846154 1. 0.9047619 0.91304348]
mean value: 0.8323196368848542
MCC on Blind test: 0.04
MCC on Training: 0.33
Running classifier: 24
Model_name: XGBoost
Model func: XGBClassifier(base_score=None, booster=None, colsample_bylevel=None,
colsample_bynode=None, colsample_bytree=None,
enable_categorical=False, gamma=None, gpu_id=None,
importance_type=None, interaction_constraints=None,
learning_rate=None, max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan, monotone_constraints=None,
n_estimators=100, n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, subsample=None, tree_method=None,
use_label_encoder=False, validate_parameters=None, verbosity=0)
Running model pipeline: Pipeline(steps=[('prep',
ColumnTransformer(remainder='passthrough',
transformers=[('num', MinMaxScaler(),
Index(['consurf_score', 'snap2_score', 'provean_score',
'duet_stability_change', 'ddg_foldx', 'deepddg', 'ddg_dynamut2',
'contacts', 'electro_rr', 'electro_mm',
...
'ZHAC000105', 'ZHAC000106', 'rsa', 'kd_values', 'rd_values', 'maf',
'lineage_proportion', 'dist_linea...
interaction_constraints=None, learning_rate=None,
max_delta_step=None, max_depth=None,
min_child_weight=None, missing=nan,
monotone_constraints=None, n_estimators=100,
n_jobs=12, num_parallel_tree=None,
predictor=None, random_state=42, reg_alpha=None,
reg_lambda=None, scale_pos_weight=None,
subsample=None, tree_method=None,
use_label_encoder=False,
validate_parameters=None, verbosity=0))])
key: fit_time
value: [0.07816386 0.03662848 0.03439021 0.033813 0.03872108 0.05464959
0.03403544 0.03438354 0.03463316 0.03474498]
mean value: 0.041416335105896
key: score_time
value: /home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:427: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_CV['source_data'] = 'CV'
/home/tanu/git/LSHTM_analysis/scripts/ml/ml_functions/MultClfs.py:454: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
scoresDF_BT['source_data'] = 'BT'
[0.01122093 0.01033044 0.00993037 0.00991368 0.00994444 0.01005077
0.01007438 0.01027513 0.01007533 0.01037931]
mean value: 0.010219478607177734
key: test_mcc
value: [-0.16666667 0.16666667 1. 0.66666667 0.16666667 0.40824829
0.57735027 0. 0. 1. ]
mean value: 0.3818931892986822
key: train_mcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_fscore
value: [0.4 0.5 1. 0.8 0.66666667 0.5
0.8 0.5 0.66666667 1. ]
mean value: 0.6833333333333333
key: train_fscore
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_precision
value: [0.33333333 0.5 1. 1. 0.66666667 1.
0.66666667 0.5 0.5 1. ]
mean value: 0.7166666666666666
key: train_precision
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_recall
value: [0.5 0.5 1. 0.66666667 0.66666667 0.33333333
1. 0.5 1. 1. ]
mean value: 0.7166666666666666
key: train_recall
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_accuracy
value: [0.4 0.6 1. 0.8 0.6 0.6 0.75 0.5 0.5 1. ]
mean value: 0.675
key: train_accuracy
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_roc_auc
value: [0.41666667 0.58333333 1. 0.83333333 0.58333333 0.66666667
0.75 0.5 0.5 1. ]
mean value: 0.6833333333333333
key: train_roc_auc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
key: test_jcc
value: [0.25 0.33333333 1. 0.66666667 0.5 0.33333333
0.66666667 0.33333333 0.5 1. ]
mean value: 0.5583333333333333
key: train_jcc
value: [1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]
mean value: 1.0
MCC on Blind test: 0.22
MCC on Training: 0.38
Extracting tts_split_name: 70_30
Total cols in each df:
CV df: 8
metaDF: 15
Adding column: Model_name
Total cols in bts df:
BT_df: 8
First proceeding to rowbind CV and BT dfs:
Final output should have: 23 columns
Combinig 2 using pd.concat by row ~ rowbind
Checking Dims of df to combine:
Dim of CV: (24, 8)
Dim of BT: (24, 8)
8
Number of Common columns: 8
These are: ['MCC', 'ROC_AUC', 'Accuracy', 'Precision', 'JCC', 'F1', 'source_data', 'Recall']
Concatenating dfs with different resampling methods [WF]:
Split type: 70_30
No. of dfs combining: 2
PASS: 2 dfs successfully combined
nrows in combined_df_wf: 48
ncols in combined_df_wf: 8
PASS: proceeding to merge metadata with CV and BT dfs
Adding column: Model_name
=========================================================
SUCCESS: Ran multiple classifiers
=======================================================
Traceback (most recent call last):
File "/home/tanu/git/LSHTM_analysis/scripts/ml/./ml_iterator.py", line 107, in <module>
out_wf_f.to_csv(('/home/tanu/git/Data/ml_combined/genes/'+ out_filename), index = False)
File "/home/tanu/.local/lib/python3.9/site-packages/pandas/core/generic.py", line 3563, in to_csv
return DataFrameRenderer(formatter).to_csv(
File "/home/tanu/.local/lib/python3.9/site-packages/pandas/io/formats/format.py", line 1180, in to_csv
csv_formatter.save()
File "/home/tanu/.local/lib/python3.9/site-packages/pandas/io/formats/csvs.py", line 241, in save
with get_handle(
File "/home/tanu/.local/lib/python3.9/site-packages/pandas/io/common.py", line 697, in get_handle
check_parent_directory(str(handle))
File "/home/tanu/.local/lib/python3.9/site-packages/pandas/io/common.py", line 571, in check_parent_directory
raise OSError(fr"Cannot save file into a non-existent directory: '{parent}'")
OSError: Cannot save file into a non-existent directory: '/home/tanu/git/Data/ml_combined/genes/home/tanu/git/LSHTM_ML/output/genes'
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
<00><><FE><FF><FF><FF><FF><FF><00><><FE><FF><FF><FF><FF><FF><FF><FF><FE><FF><FF><FF><FF><FF><FF><FF><FA><FF><FF><FF><FF><FF><00>Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
V<B2><C7>?0*<2A><13>D<D0>?x<>q<B4>Z|¿<><C2BF>y<D0>]<5D><><A2><B2><BF>#bJ$<24>?]3<>f<F9><1B>?-C<1C><>6z?[<5B><> <20><>|<7C><><BF>#Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 9 for this parallel run (total 100)...
Building estimator 2 of 9 for this parallel run (total 100)...
Building estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
(<18>uIv<00><0E>b<F6><62>d&0.<18>u<00>;]U3<>Z<FC><5A>{f4p+<18>u<00>;]U+Ekݧ<6B>;I0!<18>u<00>;]UB<>ף<93>v2<76><32>+<2B>u<00>;]U8<>q9$Ҝ'p%<18>u<00>;]U)<29>Y<C2>e<>a<FE>.<18>u<00>;]UD"r<>!<21>
<D0>+<2B>u<00>;]UXO<58><4F><96>JB<4A><42><1E>u<00>;]U<00>ymm}<7D><><B3>p<C0><1E>u<00>;]U<00><><B8>ԸĂM0(<18>u<00>;]U<00>n<1D>R<D9>w<D0>#<18>u<00>;]U<00>\<5C><>y<B5>wx<77><78><1E>u<00>;]U<00>h<B5><68> F<>\<5C>+<18>u<00>;]U@<40><15>s<C1>1<>(<18>u0 <1B>u`<60>{<7B><05>K@<40><1E>u<00>;]U6<>W8_<38><5F>԰,<18>uPNv}<7D>W<91>F<FA><46>0<D2>><3E>u<00>Jv<00><><8E>t+J<1F><><A0><1E>u<00>;]U<00><02>cH<>+p<><1E>u<00>;]UЬ<> <0A><>հ-<18>u<00>;]U<00>>'8<>-<2D>p/<18>u<00>;]U<00><><46>BL<42><4C><1E>u<00>;]U<00><1D><><C1><B4>G<9E><47>$<18>u<00>;]U2<1E><0F><30><1E>u<00>[;]U<02><>U<9F><55>e\<5C>><3E><>up<><17>u|<7C><><E1><A5><DB><F9><81><AB><DA>z<EB>uBuilding estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
<00>Rfj<66>U<00>Rfj<66>U<00>Rfj<66>U0~;i<>U`~;i<>Up~;i<>U<00><>:j<>U<00><>:j<>U<00><>:j<>USfj<66>U0Sfj<66>U@Sfj<66>U `<00>Rfj<66>U<00><00><>L"?<00><><80><FF><FF><FF><FF><FF><FF><00>27=<00><><FF><FF><FF><FF><FF><FF><<3C>=<3D>p `p};i<>UૢP<E0ABA2><00><><D0>h<C1>UBuilding estimator 3 of 9 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 4 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 5 of 9 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 9 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 9 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 8 of 9 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 9 of 9 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...
Building estimator 1 of 8 for this parallel run (total 100)...
Building estimator 2 of 8 for this parallel run (total 100)...
Building estimator 3 of 8 for this parallel run (total 100)...
Building estimator 4 of 8 for this parallel run (total 100)...
Building estimator 5 of 8 for this parallel run (total 100)...
Building estimator 6 of 8 for this parallel run (total 100)...
Building estimator 7 of 8 for this parallel run (total 100)...
Building estimator 8 of 8 for this parallel run (total 100)...