LSHTM_analysis/scripts/plotting/lineage_plots_multipage.R

196 lines
No EOL
6.4 KiB
R

library(tidyverse)
library("ggforce")
library(gginference)
library(ggpubr)
library(svglite)
# for testing only
#gene="pncA"
#drug="pyrazinamide"
lineage_plot=function(gene,drug){
lineage_filename=paste0(tolower(gene),"_merged_df2.csv")
lineage_data_path=paste0("~/git/Data/", drug, "/output") # NARSTY
full_file_path = paste0(lineage_data_path,"/",lineage_filename)
print(paste0("Loading: ",full_file_path))
df = read.csv(full_file_path)
#df2 = read.csv("~/git/Data/pyrazinamide/output/pnca_merged_df3.csv")
foo = as.data.frame(colnames(df))
cols_to_subset = c('mutationinformation'
, 'snp_frequency'
, 'pos_count'
, 'position'
, 'lineage'
, 'lineage_multimode'
, 'dst'
, 'dst_multimode'
#, 'dst_multimode_all'
, 'dst_mode')
my_df = df[ ,cols_to_subset]
#df2 = df2[ ,cols_to_subset]
# Now we need to make a column that fill na in dst with value of dst_mode
my_df$dst2 = ifelse(is.na(my_df$dst), my_df$dst_mode, my_df$dst)
#%% create sensitivity column ~ dst_mode
my_df$sensitivity = ifelse(my_df$dst2 == 1, "R", "S")
table(my_df$dst2)
if ( table(my_df$sensitivity)[2] == table(my_df$dst2)[1] && table(my_df$sensitivity)[1] == table(my_df$dst2)[2] ){
cat("\nProceeding with lineage resistance plots")
}else{
stop("FAIL: could not verify dst2 and sensitivity numbers")
}
#%%
# select only L1-L4 and LBOV
sel_lineages1 = c("LBOV", "")
my_df2 = my_df[!my_df$lineage%in%sel_lineages1,]
table(my_df2$lineage)
sel_lineages2 = c("L1", "L2", "L3", "L4")
my_df2 = my_df2[my_df2$lineage%in%sel_lineages2,]
table(my_df2$lineage)
sum(table(my_df2$lineage)) == nrow(my_df2)
table(my_df2$lineage)
#%% get only muts which belong to > 1 lineage and have different sensitivity classifications
muts = unique(my_df2$mutationinformation)
# step1 : get muts with more than one lineage
lin_muts = NULL
for (i in muts) {
print (i)
s_mut = my_df2[my_df2$mutationinformation == i,]
s_tab = table(s_mut$lineage, s_mut$sensitivity)
#print(s_tab)
if (dim(s_tab)[1] > 1 && dim(s_tab)[2] > 1){
lin_muts = c(lin_muts, i)
}
}
cat("\nGot:", length(lin_muts), "mutations belonging to >1 lineage with differing drug sensitivities")
# step 2: subset these muts for plotting
plot_df = my_df2[my_df2$mutationinformation%in%lin_muts,]
cat("\nnrow of plot_df:", nrow(plot_df))
# step 3: Add p-value
plot_df$pval = NULL
for (i in lin_muts) {
#print (i)
s_mut = plot_df[plot_df$mutationinformation == i,]
s_tab = table(s_mut$lineage, s_mut$sensitivity)
ft_pvalue_i = fisher.test(s_tab, workspace=2000000)$p.value
plot_df$pval[plot_df$mutationinformation == i] <- ft_pvalue_i
}
plot_df$pvalR = round(plot_df$pval, 3)
plot_df$pvalRF = ifelse(plot_df$pvalR == 0.05, paste0("p=",plot_df$pvalR, "."), plot_df$pvalR )
plot_df$pvalRF = ifelse(plot_df$pvalR <= 0.05, paste0("p=",plot_df$pvalR, "*"), plot_df$pvalRF )
plot_df$pvalRF = ifelse(plot_df$pvalR <= 0.01, paste0("p=",plot_df$pvalR, "**"), plot_df$pvalRF )
plot_df$pvalRF = ifelse(plot_df$pvalR == 0, 'p<0.001, ***', plot_df$pvalRF)
plot_df$pvalRF = ifelse(plot_df$pvalR > 0.05, paste0("p=",plot_df$pvalR), plot_df$pvalRF)
# format p value
lin_muts_tb = plot_df %>%
group_by(mutationinformation) %>%
count(lineage) %>%
mutate(ypos_label = max(n))
head(lin_muts_tb); class(lin_muts_tb)
lin_muts_df = as.data.frame(lin_muts_tb)
class(lin_muts_df)
intersect(names(plot_df), names(lin_muts_df))
select_cols = c("mutationinformation", "ypos_label")
lin_muts_df2 = lin_muts_df[, select_cols]
names(lin_muts_df2) ; head(lin_muts_df2)
# remove duplicates before merging
lin_muts_df2U = lin_muts_df2[!duplicated(lin_muts_df2),]
class(lin_muts_df2); class(plot_df); class(lin_muts_df2U)
lin_muts_dfM = merge(plot_df, lin_muts_df2U, by = "mutationinformation", all.y = T)
if (nrow(lin_muts_dfM) == nrow(plot_df) ){
cat("\nPASS: plot_df now has ypos for label"
, "\nGenerating plot_df2 with sensitivity as factor\n")
str(lin_muts_dfM)
lin_muts_dfM$sensitivity = as.factor(lin_muts_dfM$sensitivity)
plot_df2 = lin_muts_dfM
}else{
stop("\nSomething went wrong. ypos_label could not be generated")
}
# Do plots
plot_pages = round(length(lin_muts)/25)
if (plot_pages<1){plot_pages=1}
p_title = gene
res = 144 # SVG dots-per-inch
print(paste0('About to plot ', plot_pages, ' page(s).'))
sapply(1:plot_pages, function(page){
print(paste0("Plotting page:", page))
svglite(paste0("/tmp/",drug,"-",page,".svg"), width=2048/res, height=1534/res) # old-school square 4:3 CRT shape 1.33:1
print(
ggplot(plot_df2, aes(x = lineage
, fill = sensitivity)) +
geom_bar(stat = 'count') +
facet_wrap_paginate(~mutationinformation
, scales = 'free_y'
, ncol = 5
, nrow = 5
, page = page) +
theme(legend.position = "top"
, plot.title = element_text(hjust = 0.5, size=20)
, strip.text = element_text(size=14)
, axis.text.x = element_text(size=14)
, axis.text.y = element_text(size=14)
, axis.title.y = element_text(size=14)
, legend.title = element_blank()
, axis.title.x = element_blank()
)+
labs(title = paste0(p_title, ": sensitivity by lineage")
, y = 'Sample Count'
) +
#geom_text(aes(label = p.value, x = 0.5, y = 5))
geom_blank(aes(y = ypos_label+1.25)) +
geom_label(aes(label = pvalRF, x = 2.5, ypos_label+0.75), fill="white")
)
dev.off()
}
)
}
# hardcoded list of drugs
drugs = c(#"ethambutol",
"isoniazid",
"pyrazinamide",
"rifampicin",
"streptomycin",
#"cycloserine"
)
genes = c(#"embB",
"katG",
"pncA",
"rpoB",
"gid",
#"alr"
)
combo = data.frame(drugs, genes)
#sapply(combo$drugs, function(x){print(c(x,combo[drugs==x,"genes"]))})
# generate graphs for all drug/gene combinations in "combo"
sapply(combo$drugs, function(drug){
gene=combo[drugs==drug,"genes"]
lineage_plot(gene,drug)
print(c(gene,drug))
})