LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/logolas_logoplot.R

250 lines
6.8 KiB
R

getwd()
setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting/")
getwd()
########################################################################
# Installing and loading required packages #
########################################################################
source("../Header_TT.R")
#source("barplot_colour_function.R")
library(ggseqlogo)
#=======
# input
#=======
#############
# msa file: output of generate_mut_sequences.py
#############
homedir = '~'
indir = 'git/Data/pyrazinamide/output'
in_filename = "gene_msa.txt"
infile = paste0(homedir, '/', indir,'/', in_filename)
print(infile)
#=======
# input
#=======
#############
# combined dfs
#############
source("../combining_two_df.R")
###########################
# Data for Logo plots
# you need big df i.e
# merged_df2
# or
# merged_df2_comp
# since these have unique SNPs
# I prefer to use the merged_df2
# because using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available
###########################
# uncomment as necessary
#%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
my_df = merged_df2
#my_df = merged_df2_comp
#%%%%%%%%%%%%%%%%%%%%%%%%
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
# quick checks
colnames(my_df)
str(my_df)
# doesn't work if you use the big df as it has duplicate snps
#rownames(my_df) = my_df$Mutationinformation
# sanity check: should be True
table(my_df$position == my_df$Position)
c1 = unique(my_df$Position) # 130
nrow(my_df) # 3092
#FIXME
#!!! RESOLVE !!!
# get freq count of positions and add to the df
setDT(my_df)[, occurrence_sample := .N, by = .(id)]
table(my_df$occurrence_sample)
my_df2 = my_df %>%
select(id, Mutationinformation, Wild_type, WildPos, position, Mutant_type, occurrence, occurrence_sample)
write.csv(my_df2, "my_df2.csv")
# extract freq_pos>1 since this will not add to much in the logo plot
# pos 5 has one mutation but coming from atleast 5 samples?
table(my_df$occurrence)
foo = my_df[my_df$occurrence ==1,]
# uncomment as necessary
my_data_snp = my_df #3092
#!!! RESOLVE
# FIXME
my_data_snp = my_df[my_df$occurrence!=1,] #3072, 36...3019
u = unique(my_data_snp$Position) #96
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#########################################################
# Task: To generate a logo plot or bar plot but coloured
# aa properties.
# step1: read mcsm file and OR file
# step2: plot wild type positions
# step3: plot mutants per position coloured by aa properties
# step4: make the size of the letters/bars prop to OR if you can!
#########################################################
##useful links
#https://stackoverflow.com/questions/5438474/plotting-a-sequence-logo-using-ggplot2
#https://omarwagih.github.io/ggseqlogo/
#https://kkdey.github.io/Logolas-pages/workflow.html
#A new sequence logo plot to highlight enrichment and depletion.
# https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288878/
##very good: http://www.cbs.dtu.dk/biotools/Seq2Logo-2.0/
#==============
# matrix for mutant type
# frequency of mutant type by position
#==============
table(my_data_snp$Mutant_type, my_data_snp$Position)
tab_mt = table(my_data_snp$Mutant_type, my_data_snp$Position)
class(tab_mt)
# unclass to convert to matrix
tab_mt = unclass(tab_mt)
tab_mt = as.matrix(tab_mt, rownames = T)
# should be TRUE
is.matrix(tab_mt)
rownames(tab_mt) #aa
colnames(tab_mt) #pos
#**********************
# Plot 1: mutant logo
#**********************
my_ymax = max(my_data_snp$occurrence); my_ymax
my_ylim = c(0,my_ymax) # very important
# axis sizes
# common: text and label
my_ats = 15
my_als = 20
# individual: text and label
my_xats = 15
my_yats = 20
my_xals = 15
my_yals = 20
# legend size: text and label
my_lts = 20
#my_lls = 20
# Color scheme based on chemistry of amino acids
chemistry = data.frame(
letter = c('G', 'S', 'T', 'Y', 'C', 'N', 'Q', 'K', 'R', 'H', 'D', 'E', 'P', 'A', 'W', 'F', 'L', 'I', 'M', 'V'),
group = c(rep('Polar', 5), rep('Neutral', 2), rep('Basic', 3), rep('Acidic', 2), rep('Hydrophobic', 8)),
col = c(rep('#109648', 5), rep('#5E239D', 2), rep('#255C99', 3), rep('#D62839', 2), rep('#221E22', 8)),
stringsAsFactors = F
)
# uncomment as necessary
my_type = "EDLogo"
#my_type = "Logo"
logomaker(tab_mt
, type = my_type
, return_heights = T
# , color_type = "per_row"
# , colors = chemistry$col
# , method = 'custom'
# , seq_type = 'aa'
# , col_scheme = "taylor"
# , col_scheme = "chemistry2"
) +
theme(legend.position = "bottom"
, legend.title = element_blank()
, legend.text = element_text(size = my_lts )
, axis.text.x = element_text(size = my_ats , angle = 90)
, axis.text.y = element_text(size = my_ats , angle = 90))
p0 = logomaker(tab_mt
, type = my_type
, return_heights = T
, color_type = "per_row"
, colors = chemistry$col
# , seq_type = 'aa'
# , col_scheme = "taylor"
# , col_scheme = "chemistry2"
) +
#ylab('my custom height') +
theme(axis.text.x = element_blank()) +
# theme_logo()+
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
scale_x_continuous(breaks = 1:ncol(tab_mt)
, labels = colnames(tab_mt))+
scale_y_continuous( breaks = 1:my_ymax
, limits = my_ylim)
p0
# further customisation
p1 = p0 + theme(legend.position = "bottom"
, legend.title = element_blank()
, legend.text = element_text(size = my_lts)
, axis.text.x = element_text(size = my_ats , angle = 90)
, axis.text.y = element_text(size = my_ats , angle = 90))
p1
#=======
# input
#=======
#############
# msa file: output of generate_mut_sequences.py
#############
homedir = '~'
indir = 'git/Data/pyrazinamide/output'
in_filename = "gene_msa.txt"
infile = paste0(homedir, '/', indir,'/', in_filename)
print(infile)
##############
# ggseqlogo: custom matrix of my data
##############
snps = read.csv(infile
, stringsAsFactors = F
, header = F) #3072,
class(snps); str(snps) # df and chr
# turn to a character vector
snps2 = as.character(snps[1:nrow(snps),])
class(snps2); str(snps2) #character, chr
# plot
logomaker(snps2, type = my_type
, color_type = "per_row") +
theme(axis.text.x = element_blank()) +
theme_logo()+
# scale_x_continuous(breaks=1:51, parse (text = colnames(tab)) )
scale_x_continuous(breaks = 1:ncol(tab_mt)
, labels = colnames(tab_mt))+
scale_y_continuous( breaks = 0:5
, limits = my_ylim)