LSHTM_analysis/scripts/plotting/resolving_ambiguous_muts.R

136 lines
4.6 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: To resolve ambiguous muts present in <gene>_metadata.csv
#(which is one of the outputs from python script)
# Input csv file: <gene>_metadata.csv
# Output csv file: <gene>_metadata_clean.csv
#########################################################
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting/")
getwd()
source("dirs.R")
cat("Directories imported:"
, "\n===================="
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir)
cat("Variables imported:"
, "\n====================="
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\ndr_muts_col:", dr_muts_col
, "\nother_muts_col:", other_muts_col
, "\ndrtype_col:", resistance_col)
#========================================================
#===========
# input
#===========
# infile1: gene associated meta data
gene_metadata_raw = paste0(tolower(gene), "_metadata_raw.csv")
infile_gene_metadata_raw = paste0(outdir, "/", gene_metadata_raw)
cat("Input infile 1:", infile_gene_metadata_raw)
# infile 2: ambiguous muts
ambiguous_muts = paste0(tolower(gene), "_ambiguous_mut_names.csv")
infile_ambiguous_muts = paste0(outdir, "/", ambiguous_muts)
cat("Input infile 2:", infile_ambiguous_muts)
#===========
# output
#===========
# clean gene_metadat with ambiguous muts resolved
gene_metadata_clean = paste0(tolower(gene), "_metadata.csv")
outfile_gene_metadata_clean = paste0(outdir, "/", gene_metadata_clean)
cat("Output file:", outfile_gene_metadata_clean)
#%%===============================================================
###########################
# Read file: <gene>_meta data raw.csv
###########################
cat("Reading meta data file:", infile_gene_metadata_raw)
gene_metadata_raw <- read.csv(infile_gene_metadata_raw
, stringsAsFactors = F
, header = T)
cat("Dim:", dim(gene_metadata_raw))
###########################
# Read file: ambiguous muts.csv
##########################
ambiguous_muts = read.csv(infile_ambiguous_muts)
ambiguous_muts_names = ambiguous_muts$mutation
common_muts_all = gene_metadata_raw[gene_metadata_raw$mutation%in%ambiguous_muts_names,]
#==============
# resolving ambiguous muts
#===============
table(gene_metadata_raw$mutation_info)
count_check = as.data.frame(cbind(table(gene_metadata_raw$mutationinformation, gene_metadata_raw$mutation_info)))
count_check$checks = ifelse(count_check[[dr_muts_col]]&count_check[[other_muts_col]]>0
, "ambi", "pass")
table(count_check$checks)
cat(table(count_check$checks)[["ambi"]], "ambiguous muts detected. Correcting these")
# remove all ambiguous muts from df
ids = gene_metadata_raw$mutation%in%common_muts_all$mutation; table(ids)
gene_metadata_raw_unambiguous = gene_metadata_raw[!ids,]
# sanity checks: should be true
table(gene_metadata_raw_unambiguous$mutation%in%common_muts_all$mutation)[[1]] == nrow(gene_metadata_raw_unambiguous)
nrow(gene_metadata_raw_unambiguous) + nrow(common_muts_all) == nrow(gene_metadata_raw)
# check before resolving ambiguous muts
table(common_muts_all$mutation_info)
common_muts_all$mutation_info = as.factor(common_muts_all$mutation_info)
# resolving ambiguous muts: change other_muts to dr_muts
common_muts_all$mutation_info[common_muts_all$mutation_info==other_muts_col] <- dr_muts_col
table(common_muts_all$mutation_info)
common_muts_all$mutation_info = factor(common_muts_all$mutation_info)
table(common_muts_all$mutation_info)
common_muts_all$mutation_info = as.character(common_muts_all$mutation_info)
# combining to a clean df
gene_metadata = rbind(gene_metadata_raw_unambiguous, common_muts_all)
all(dim(gene_metadata) == dim(gene_metadata))
table(gene_metadata$mutation_info)
count_check2 = as.data.frame(cbind(table(gene_metadata$mutationinformation
, gene_metadata$mutation_info)))
count_check2$checks = ifelse(count_check2[[dr_muts_col]]&count_check2[[other_muts_col]]>0
, "ambi", "pass")
if (table(count_check2$checks) == nrow(count_check2)){
cat("PASS: ambiguous muts successfully resolved."
, "\nwriting file")
}else{
print("FAIL: ambiguous muts could not be resolved!")
quit()
}
#============
# writing file
#=============
write.csv(gene_metadata, outfile_gene_metadata_clean
, row.names = FALSE)
#=====================================================================
# End of script
#======================================================================