LSHTM_analysis/scripts/plotting/ps_plots_combined.R

290 lines
9.2 KiB
R

#!/usr/bin/env Rscript
#########################################################
# TASK: AF, OR and stability plots: PS
# Output: 1 SVG
#########################################################
# Installing and loading required packages
##########################################################
getwd()
setwd("~/git/LSHTM_analysis/scripts/plotting")
getwd()
source("Header_TT.R")
library(ggplot2)
library(data.table)
#source("combining_dfs_plotting.R")
#source("../functions/bp_subcolours.R")
source("get_plotting_dfs.R")
source("subcols_axis.R")
###########################
# Data for PS plots
# you need merged_df3_comp/merged_df_comp
# since these have unique SNPs
###########################
no_or_index = which(is.na(my_df_u_cols$or_mychisq))
my_df_u_cols_clean = my_df_u_cols[-no_or_index,]
#%%%%%%%%%%%%%%%%%%%%%%%%
# REASSIGNMENT
df = my_df_u_cols_clean
#%%%%%%%%%%%%%%%%%%%%%%%%%
cols_to_select = colnames(mut_pos_cols)
mut_pos_cols_clean = df[colnames(df)%in%cols_to_select]
mut_pos_cols_clean = unique(mut_pos_cols_clean[, 1:length(mut_pos_cols_clean)])
########################################################################
# end of data extraction and cleaning for plots #
########################################################################
#===========================
# Barplot with axis colours:
#===========================
#================
# Inspecting mut_pos_cols
# position numbers and colours and assigning axis colours based on lab_fg
# of the correct df
# open file from desktop ("sample_axis_cols") for cross checking
#================
# very important!
#my_axis_colours = mut_pos_cols$lab_fg
if (nrow(mut_pos_cols_clean) == length(unique(df$position)) ){
print("PASS: lengths checked, assigning axis colours")
my_axis_colours = mut_pos_cols_clean$lab_fg
cat("length of axis colours:", length(my_axis_colours)
, "\nwhich corresponds to the number of positions on the x-axis of the plot")
}else{
print("FAIL:lengths mismatch, could not assign axis colours")
quit()
}
# unique positions
upos = unique(df$position); length(upos)
table(df$duet_outcome)
# add frequency of positions (from lib data.table)
setDT(df)[, pos_count := .N, by = .(position)]
# this is cummulative
table(df$pos_count)
# use group by on this
library(dplyr)
snpsBYpos_df <- df %>%
group_by(position) %>%
summarize(snpsBYpos = mean(pos_count))
table(snpsBYpos_df$snpsBYpos)
snp_count = sort(unique(snpsBYpos_df$snpsBYpos))
# sanity checks
# should be a factor
if (is.factor(df$duet_outcome)){
print("duet_outcome is factor")
}else{
print("converting duet_outcome to factor")
df$duet_outcome = as.factor(df$duet_outcome)
}
is.factor(df$duet_outcome)
# should be -1 and 1
min(df$duet_scaled)
max(df$duet_scaled)
# sanity checks
tapply(df$duet_scaled, df$duet_outcome, min)
tapply(df$duet_scaled, df$duet_outcome, max)
# My colour FUNCTION: based on group and subgroup
# in my case;
# df = df
# group = duet_outcome
# subgroup = normalised score i.e duet_scaled
# check unique values in normalised data
u = unique(df$duet_scaled)
cat("No. of unique values in normalised data:", length(u))
# Define group
# Create an extra column called group which contains the "gp name and score"
# so colours can be generated for each unique values in this column
my_grp = df$duet_scaled # no rounding
df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "")
# Call the function to create the palette based on the group defined above
colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp")
print(paste0("Colour palette generated for: ", length(colours), " colours"))
my_title = "Protein stability (DUET)"
cat("No. of axis colours: ", length(my_axis_colours))
#******************
# generate plot: barplot unordered by frequency with axis colours
#******************
class(df$lab_bg)
# define cartesian coord
my_xlim = length(unique(df$position)); my_xlim
# axis label size
my_xals = 18
my_yals = 18
# axes text size
my_xats = 14
my_yats = 18
g3 = ggplot(df, aes(factor(position, ordered = T)))
p3 = g3 +
coord_cartesian(xlim = c(1, my_xlim)
#, ylim = c(0, 6)
, ylim = c(0, max(snp_count))
, clip = "off") +
geom_bar(aes(fill = group), colour = "grey") +
scale_fill_manual(values = colours
, guide = "none") +
geom_tile(aes(,-0.8, width = 0.95, height = 0.85)
, fill = df$lab_bg) +
geom_tile(aes(,-1.2, width = 0.95, height = -0.2)
, fill = df$lab_bg2) +
# Here it"s important to specify that your axis goes from 1 to max number of levels
theme(axis.text.x = element_text(size = my_xats
, angle = 90
, hjust = 1
, vjust = 0.4
, colour = my_axis_colours)
, axis.text.y = element_text(size = my_yats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_text(size = my_xals)
, axis.title.y = element_text(size = my_yals+2 )
, axis.ticks.x = element_blank()) +
labs(title = ""
#title = my_title
, x = "Position"
, y = "Frequency")
p3
#=================
# generate plot: AF by position unordered, not coloured
#=================
my_ats = 20 # axis text size
my_als = 22 # axis label size
g1 = ggplot(df)
p1 = g1 +
geom_bar(aes(x = factor(position, ordered = T)
, y = af*100
#, fill = duet_outcome
)
, color = "black"
, fill = "lightgrey"
, stat = "identity") +
theme(axis.text.x = element_blank()
, axis.text.y = element_text(size = my_ats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_blank()
, axis.title.y = element_text(size = my_als) ) +
labs(title = ""
#, size = 100
#, x = "Wild-type position"
, y = "MAF(%)")
p1
#=================
# generate plot: OR by position unordered
#=================
my_ats = 20 # axis text size
my_als = 22 # axis label size
g2 = ggplot(df)
p2 = g2 +
geom_bar(aes(x = factor(position, ordered = T)
, y = or_mychisq
#, fill = duet_outcome
)
, colour = "black"
, fill = "lightgray"
, stat = "identity") +
scale_y_continuous(limits = c(0, 450))+
theme(axis.text.x = element_blank()
, axis.text.y = element_text(size = my_ats
, angle = 0
, hjust = 1
, vjust = 0)
, axis.title.x = element_blank()
, axis.title.y = element_text(size = my_als) ) +
labs(#title = "OR by position"
#, x = "Wild-type position"
y = "OR")
p2
########################################################################
# end of DUET barplots #
########################################################################
#============================
# combined plot 1: UNlabelled
#============================
ps_combined = "af_or_combined_PS_v2.svg"
plot_ps_combined = paste0(plotdir,"/", ps_combined)
cat("combined plot Unlabelled:", plot_ps_combined)
svg(plot_ps_combined , width = 26, height = 12)
OutPlot_combined = cowplot::plot_grid(p1, p2, p3
, ncol = 1
, align = 'v')
OutPlot_combined
dev.off()
#============================
# combined plot 2: labelled
#============================
ps_combined_labelled = "af_or_combined_PS_labelled_v2.svg"
plot_ps_combined_labelled = paste0(plotdir,"/", ps_combined_labelled)
cat("combined plot Labelled:", plot_ps_combined_labelled)
svg(plot_ps_combined_labelled , width = 26, height = 12)
OutPlot_combined_labelled = cowplot::plot_grid(p1, p2, p3
, ncol = 1
#, labels = c("(a)", "(b)", "(c)")
, labels = "AUTO"
, label_size = 25
, align = 'hv'
, hjust = -0.4)
OutPlot_combined_labelled
dev.off()
#============================
# combined plot 2: labelled
# ISMB poster July 2021
#============================
ps_combined_labelled_poster = "af_or_combined_PS_labelled_v2_poster.svg"
plot_ps_combined_labelled_poster = paste0(plotdir,"/", ps_combined_labelled_poster)
cat("combined plot Labelled:", plot_ps_combined_labelled_poster)
svg(plot_ps_combined_labelled_poster , width = 26, height = 8)
OutPlot_combined_labelled_poster = cowplot::plot_grid(p2, p3
, ncol = 1
#, labels = c("(a)", "(b)", "(c)")
, labels = "AUTO"
, label_size = 25
, align = 'hv'
, hjust = -0.4)
OutPlot_combined_labelled_poster
dev.off()