LSHTM_analysis/scripts/data_extraction_epistasis.py

305 lines
9.8 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info?
# FIXME: import dirs.py to get the basic dir paths available
#=======================================================================
# TASK: extract ALL <gene> matched mutations from GWAS data
# Input data file has the following format: each row = unique sample id
# id,country,lineage,sublineage,drtype,drug,dr_muts_col,other_muts_col...
# 0,sampleID,USA,lineage2,lineage2.2.1,Drug-resistant,0.0,WT,gene_match<wt>POS<mut>; pncA_c.<wt>POS<mut>...
# where multiple mutations and multiple mutation types are separated by ';'.
# We are interested in the protein coding region i.e mutation with the<gene>_'p.' format.
# This script splits the mutations on the ';' and extracts protein coding muts only
# where each row is a separate mutation
# sample ids AND mutations are NOT unique, but the COMBINATION (sample id + mutation) = unique
# NOTE
#drtype is renamed to 'resistance' in the 35k dataset
# output files: all lower case
# 0) <gene>_common_ids.csv
# 1) <gene>_ambiguous_muts.csv
# 2) <gene>_mcsm_snps.csv
# 3) <gene>_metadata.csv
# 4) <gene>_all_muts_msa.csv
# 5) <gene>_mutational_positons.csv
# FIXME
## Make all cols lowercase
## change WildPos: wild_pos
## Add an extra col: wild_chain_pos
## output df: <gene>_linking_df.csv
#containing the following cols
#1. Mutationinformation
#2. wild_type
#3. position
#4. mutant_type
#5. chain
#6. wild_pos
#7. wild_chain_pos
#=======================================================================
#%% load libraries
import os, sys
import re
import pandas as pd
import numpy as np
import argparse
#=======================================================================
#%% homdir and curr dir and local imports
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# import aa dict
#from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
#from tidy_split import tidy_split
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name (case sensitive)', default = None)
arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = None)
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output paths & filenames
drug = args.drug
gene = args.gene
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
nssnp_match = gene_match +'[A-Za-z]{3}[0-9]+[A-Za-z]{3}'
print('nsSNP for gene', gene, ':', nssnp_match)
nssnp_match2 = re.compile(nssnp_match)
wt_regex = gene_match.lower()+'([A-Za-z]{3})'
print('wt regex:', wt_regex)
mut_regex = r'[0-9]+(\w{3})$'
print('mt regex:', mut_regex)
pos_regex = r'([0-9]+)'
print('position regex:', pos_regex)
# building cols to extract
dr_muts_col = 'dr_mutations_' + drug
other_muts_col = 'other_mutations_' + drug
resistance_col = 'drtype'
print('Extracting columns based on variables:\n'
, drug
, '\n'
, dr_muts_col
, '\n'
, other_muts_col
, '\n'
, resistance_col
, '\n===============================================================')
#=======================================================================
#%% input and output dirs and files
#=======
# dirs
#=======
datadir = homedir + '/' + 'git/Data'
indir = datadir + '/' + drug + '/' + 'input'
outdir = datadir + '/' + drug + '/' + 'output'
#=======
# input
#=======
#in_filename_master_master = 'original_tanushree_data_v2.csv' #19k
in_filename_master = 'mtb_gwas_meta_v6.csv' #35k
infile_master = datadir + '/' + in_filename_master
print('Input file: ', infile_master
, '\n============================================================')
#=======
# output
#=======
out_filename_epistasis = gene.lower() + '_epistasis_muts.csv'
outfile_epistasis = outdir + '/' + out_filename_epistasis
print('Output file: ', outfile_epistasis
, '\n============================================================')
out_filename_epistasis_check = gene.lower() + '_epistasis_muts_check.csv'
outfile_epistasis_check = outdir + '/' + out_filename_epistasis_check
print('Output file: ', outfile_epistasis_check
, '\n============================================================')
#%%end of variable assignment for input and output files
#=======================================================================
#%% Read input file
master_data = pd.read_csv(infile_master, sep = ',')
# column names
#list(master_data.columns)
# extract elevant columns to extract from meta data related to the drug
if in_filename_master == 'original_tanushree_data_v2.csv':
meta_data = master_data[['id'
, 'country'
, 'lineage'
, 'sublineage'
, 'drtype'
, drug
, dr_muts_col
, other_muts_col]]
else:
core_cols = ['id'
, 'sample'
, 'lineage'
, 'sublineage'
, 'country_code'
, 'geographic_source'
, resistance_col]
variable_based_cols = [drug
, dr_muts_col
, other_muts_col]
cols_to_extract = core_cols + variable_based_cols
print('Extracting', len(cols_to_extract), 'columns from master data')
meta_data = master_data[cols_to_extract]
del(master_data, variable_based_cols, cols_to_extract)
print('Extracted meta data from filename:', in_filename_master
, '\nDim:', meta_data.shape)
# checks and results
total_samples = meta_data['id'].nunique()
print('RESULT: Total samples:', total_samples
, '\n===========================================================')
# counts NA per column
meta_data.isna().sum()
print('No. of NAs/column:' + '\n', meta_data.isna().sum()
, '\n===========================================================')
#%%
# shorter df
cols_epi = ['id'
, 'sample'
, dr_muts_col
, other_muts_col]
meta_data_epi = meta_data[cols_epi]
# extract entries with semi colon
multi_match = ';'
meta_multi = meta_data_epi.loc[meta_data_epi[dr_muts_col].str.contains(multi_match , na = False, regex = True, case = False) | meta_data_epi[other_muts_col].str.contains(multi_match , na = False, regex = True, case = False) ]
meta_gene_multi = meta_multi.loc[meta_multi[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) | meta_multi[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ]
#%%
# count no. of nssnp_match: dr_muts_col
meta_gene_multi['dr_mult_snp_count'] = meta_gene_multi [dr_muts_col].str.count(nssnp_match, re.I)
# count no. of nssnp_match: other_muts_col
meta_gene_multi['other_mult_snp_count'] = meta_gene_multi [other_muts_col].str.count(nssnp_match, re.I)
# check condition
(meta_gene_multi['dr_mult_snp_count']>1) | (meta_gene_multi['other_mult_snp_count']>1) == True
meta_gene_epi = meta_gene_multi.loc[(meta_gene_multi['dr_mult_snp_count']>1) | (meta_gene_multi['other_mult_snp_count']>1) == True]
#%% TEST
# formatting, replace !nssnp_match with nothing
#foo1 = 'pncA_p.Thr47Pro;pncA_p.Thr61Pro;rpsA_c.XX'
#foo2 = 'pncA_Chromosome:g.2288693_2289280del; WT; pncA_p.Thr61Ala'
#foo1_s = foo1.split(';')
#foo1_s
#nssnp_match2 = re.compile('(pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3})')
#arse=list(filter(nssnp_match2.match, foo1_s))
#arse
#foo1_s2 = ';'.join(arse)
#foo1_s2
#%%
#nssnp_match2 = re.compile('(pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3})')
# dr_muts_col
dr_clean_col = dr_muts_col + '_clean'
#meta_gene_epi[dr_clean_col] = meta_gene_epi[dr_muts_col].str.split(';')
meta_gene_epi[dr_clean_col] = ''
for i, v in enumerate(meta_gene_epi[dr_muts_col]):
#print(i, v)
print('======================================================')
print(i)
print(v)
dr2_s = v.split(';')
print(dr2_s)
dr2_sf = list(filter(nssnp_match2.match, dr2_s))
#dr2_sf = list(filter(nssnp_match.match, dr2_s))
print(dr2_sf)
dr2_sf2 = ';'.join(dr2_sf)
meta_gene_epi[dr_clean_col].iloc[i] = dr2_sf2
del(i, v)
#%%
# other_muts_col
other_clean_col = other_muts_col + '_clean'
#meta_gene_epi[other_clean_col] = meta_gene_epi[other_muts_col].str.split(';')
meta_gene_epi[other_clean_col] = ''
for i, v in enumerate(meta_gene_epi[other_muts_col]):
#print(i, v)
#print('======================================================')
#print(i)
#print(v)
other2_s = v.split(';')
#print(other2_s)
other2_sf = list(filter(nssnp_match2.match, other2_s))
#print(other2_sf)
other2_sf2 = ';'.join(other2_sf)
meta_gene_epi[other_clean_col].iloc[i] = other2_sf2
#%%
# rearange columns
meta_gene_epi_f = meta_gene_epi[['id', 'sample'
, dr_muts_col, dr_clean_col
, 'dr_mult_snp_count'
, other_muts_col, other_clean_col
, 'other_mult_snp_count']]
#print(meta_gene_epi_f.columns)
print(meta_gene_epi_f)
cols_to_output = ['id', 'sample'
, dr_clean_col
# , 'dr_mult_snp_count'
, other_clean_col
# , 'other_mult_snp_count'
]
meta_gene_epi_f2 = meta_gene_epi_f[cols_to_output]
#%%
# formatting, replace !nssnp_match with nothing
#nssnp_neg_match = '(?!pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3})'
#%% end of data extraction. Write files
meta_gene_epi_f.to_csv(outfile_epistasis_check, index = True)
meta_gene_epi_f2.to_csv(outfile_epistasis, index = False)