LSHTM_analysis/scripts/combining_dfs.py

1039 lines
No EOL
40 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
Created on Tue Aug 6 12:56:03 2019
@author: tanu
'''
#=======================================================================
# Task: combining all dfs to a single one
# Input: 8 dfs
#1) <gene>.lower()'_complex_mcsm_norm.csv'
#2) <gene>.lower()_foldx.csv'
#3) <gene>.lower()_dssp.csv'
#4) <gene>.lower()_kd.csv'
#5) <gene>.lower()_rd.csv'
#6) 'ns' + <gene>.lower()_snp_info.csv'
#7) <gene>.lower()_af_or.csv'
#8) <gene>.lower() _af_or_kinship.csv
# combining order
#Merge1 = 1 + 2
#Merge2 = 3 + 4
#Merge3 = Merge2 + 5
#Merge4 = Merge1 + Merge3
#Merge5 = 6 + 7
#Merge6 = Merge5 + 8
#Merge7 = Merge4 + Merge6
# Output: single csv of all 8 dfs combined
# useful link
# https://stackoverflow.com/questions/23668427/pandas-three-way-joining-multiple-dataframes-on-columns
#%% FIXME: let the script proceed even if files don't exist!
# i.e example below
# '/home/tanu/git/Data/ethambutol/output/dynamut_results/embb_complex_dynamut_norm.csv'
#=======================================================================
#%% load packages
import sys, os
import pandas as pd
from pandas import DataFrame
import numpy as np
import argparse
from functools import reduce
#=======================================================================
#%% specify input and curr dir
homedir = os.path.expanduser('~')
# set working dir
os.getcwd()
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
os.getcwd()
# FIXME: local imports
#from combining import combine_dfs_with_checks
from combining_FIXME import detect_common_cols
from reference_dict import oneletter_aa_dict
from reference_dict import low_3letter_dict
from aa_code import get_aa_3lower
from aa_code import get_aa_1upper
# REGEX: as required
# mcsm_regex = r'^([A-Za-z]{1})([0-9]+)([A-Za-z]{1})$'
# mcsm_wt = mcsm_df['mutationinformation'].str.extract(mcsm_regex)[0]
# mcsm_mut = mcsm_df['mutationinformation'].str.extract(mcsm_regex)[2]
# gwas_regex = r'^([A-Za-z]{3})([0-9]+)([A-Za-z]{3})$'
# gwas_wt = mcsm_df['mutation'].str.extract(gwas_regex)[0]
# gwas_pos = mcsm_df['mutation'].str.extract(gwas_regex)[1]
# gwas_mut = mcsm_df['mutation'].str.extract(gwas_regex)[2]
#=======================================================================
#%% command line args: case sensitive
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = '')
arg_parser.add_argument('-g', '--gene', help = 'gene name', default = '')
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
#=======================================================================
#%% variable assignment: input and output
drug = args.drug
gene = args.gene
datadir = args.datadir
indir = args.input_dir
outdir = args.output_dir
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
#%%=======================================================================
#==============
# directories
#==============
if not datadir:
datadir = homedir + '/git/Data/'
if not indir:
indir = datadir + drug + '/input/'
if not outdir:
outdir = datadir + drug + '/output/'
#=======
# input
#=======
gene_list_normal = ['pnca', 'katg', 'rpob', 'alr']
if gene.lower() == "gid":
print("\nReading mCSM file for gene:", gene)
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm_SRY.csv' # was incorrectly SAM previously
if gene.lower() == "embb":
print("\nReading mCSM file for gene:", gene)
#in_filename_mcsm = gene.lower() + '_complex_mcsm_norm1.csv' #798
#in_filename_mcsm = gene.lower() + '_complex_mcsm_norm2.csv' #844
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm3.csv' #851
if gene.lower() in gene_list_normal:
print("\nReading mCSM file for gene:", gene)
in_filename_mcsm = gene.lower() + '_complex_mcsm_norm.csv'
infile_mcsm = outdir + in_filename_mcsm
mcsm_df = pd.read_csv(infile_mcsm, sep = ',')
in_filename_foldx = gene.lower() + '_foldx.csv'
infile_foldx = outdir + in_filename_foldx
foldx_df = pd.read_csv(infile_foldx , sep = ',')
in_filename_deepddg = gene.lower() + '_ni_deepddg.csv' # change to decent filename and put it in the correct dir
infile_deepddg = outdir + in_filename_deepddg
deepddg_df = pd.read_csv(infile_deepddg, sep = ',')
in_filename_dssp = gene.lower() + '_dssp.csv'
infile_dssp = outdir + in_filename_dssp
dssp_df_raw = pd.read_csv(infile_dssp, sep = ',')
in_filename_kd = gene.lower() + '_kd.csv'
infile_kd = outdir + in_filename_kd
kd_df = pd.read_csv(infile_kd, sep = ',')
in_filename_rd = gene.lower() + '_rd.csv'
infile_rd = outdir + in_filename_rd
rd_df = pd.read_csv(infile_rd, sep = ',')
#in_filename_snpinfo = 'ns' + gene.lower() + '_snp_info_f.csv' # gwas f info
#infile_snpinfo = outdir + in_filename_snpinfo
in_filename_afor = gene.lower() + '_af_or.csv'
infile_afor = outdir + in_filename_afor
afor_df = pd.read_csv(infile_afor, sep = ',')
#in_filename_afor_kin = gene.lower() + '_af_or_kinship.csv'
#infile_afor_kin = outdir + in_filename_afor_kin
infilename_dynamut2 = gene.lower() + '_dynamut2_norm.csv'
infile_dynamut2 = outdir + 'dynamut_results/dynamut2/' + infilename_dynamut2
dynamut2_df = pd.read_csv(infile_dynamut2, sep = ',')
infilename_mcsm_f_snps = gene.lower() + '_mcsm_formatted_snps.csv'
infile_mcsm_f_snps = outdir + infilename_mcsm_f_snps
mcsm_f_snps = pd.read_csv(infile_mcsm_f_snps, sep = ',', names = ['mutationinformation'], header = None)
# more output added
## consurf [change colnames]
infilename_consurf = gene.lower() + '_consurf_grades_f.csv'
infile_consurf = outdir + 'consurf/'+ infilename_consurf
consurf_df = pd.read_csv(infile_consurf, sep = ',')
## SNAP2 [add normalised score]
infilename_snap2 = gene.lower() + '_snap2_output.csv'
infile_snap2 = outdir + 'snap2/'+ infilename_snap2
snap2_df = pd.read_csv(infile_snap2, sep = ',')
#------------------------------------------------------------------------------
# ONLY:for gene pnca and gid: End logic should pick this up!
geneL_na = ['gid', 'rpob']
if gene.lower() in geneL_na:
print("\nGene:", gene.lower()
, "\nReading mCSM_na files")
# infilename_dynamut = gene.lower() + '_dynamut_norm.csv' # gid
# infile_dynamut = outdir + 'dynamut_results/' + infilename_dynamut
# dynamut_df = pd.read_csv(infile_dynamut, sep = ',')
infilename_mcsm_na = gene.lower() + '_complex_mcsm_na_norm.csv' # gid
infile_mcsm_na = outdir + 'mcsm_na_results/' + infilename_mcsm_na
mcsm_na_df = pd.read_csv(infile_mcsm_na, sep = ',')
geneL_dy = ['gid']
if gene.lower() in geneL_dy:
print("\nGene:", gene.lower()
, "\nReading Dynamut and mCSM_na files")
infilename_dynamut = gene.lower() + '_dynamut_norm.csv' # gid
infile_dynamut = outdir + 'dynamut_results/' + infilename_dynamut
dynamut_df = pd.read_csv(infile_dynamut, sep = ',')
# infilename_mcsm_na = gene.lower() + '_complex_mcsm_na_norm.csv' # gid
# infile_mcsm_na = outdir + 'mcsm_na_results/' + infilename_mcsm_na
# mcsm_na_df = pd.read_csv(infile_mcsm_na, sep = ',')
# ONLY:for gene embb and alr and katg: End logic should pick this up!
geneL_ppi2 = ['embb', 'alr']
#if gene.lower() == "embb" or "alr":
if gene.lower() in geneL_ppi2:
infilename_mcsm_ppi2 = gene.lower() + '_complex_mcsm_ppi2_norm.csv'
infile_mcsm_ppi2 = outdir + 'mcsm_ppi2/' + infilename_mcsm_ppi2
mcsm_ppi2_df = pd.read_csv(infile_mcsm_ppi2, sep = ',')
if gene.lower() == "embb":
sel_chain = "B"
else:
sel_chain = "A"
#------------------------------------------------------------------------------
#=======
# output
#=======
out_filename_comb = gene.lower() + '_all_params.csv'
outfile_comb = outdir + out_filename_comb
print('\nOutput filename:', outfile_comb
, '\n===================================================================')
# end of variable assignment for input and output files
#%%############################################################################
#=====================
# some preprocessing
#=====================
#===========
# FoldX
#===========
foldx_df.shape
#----------------------
# scale foldx values
#----------------------
# rename ddg column to ddg_foldx
foldx_df['ddg']
foldx_df = foldx_df.rename(columns = {'ddg':'ddg_foldx'})
foldx_df['ddg_foldx']
# Rescale values in Foldx_change col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
foldx_min = foldx_df['ddg_foldx'].min()
foldx_max = foldx_df['ddg_foldx'].max()
foldx_min
foldx_max
# quick check
len(foldx_df.loc[foldx_df['ddg_foldx'] >= 0])
len(foldx_df.loc[foldx_df['ddg_foldx'] < 0])
foldx_scale = lambda x : x/abs(foldx_min) if x < 0 else (x/foldx_max if x >= 0 else 'failed')
foldx_df['foldx_scaled'] = foldx_df['ddg_foldx'].apply(foldx_scale)
print('\nRaw foldx scores:\n', foldx_df['ddg_foldx']
, '\n---------------------------------------------------------------'
, '\nScaled foldx scores:\n', foldx_df['foldx_scaled'])
# additional check added
fsmi = foldx_df['foldx_scaled'].min()
fsma = foldx_df['foldx_scaled'].max()
c = foldx_df[foldx_df['ddg_foldx']>=0].count()
foldx_pos = c.get(key = 'ddg_foldx')
c2 = foldx_df[foldx_df['foldx_scaled']>=0].count()
foldx_pos2 = c2.get(key = 'foldx_scaled')
if foldx_pos == foldx_pos2 and fsmi == -1 and fsma == 1:
print('\nPASS: Foldx values scaled correctly b/w -1 and 1')
else:
print('\nFAIL: Foldx values scaled numbers MISmatch'
, '\nExpected number:', foldx_pos
, '\nGot:', foldx_pos2
, '\n======================================================')
#-------------------------
# foldx outcome category:
# Remember, its inverse
# +ve: Destabilising
# -ve: Stabilising
#--------------------------
foldx_df['foldx_outcome'] = foldx_df['ddg_foldx'].apply(lambda x: 'Destabilising' if x >= 0 else 'Stabilising')
foldx_df[foldx_df['ddg_foldx']>=0].count()
foc = foldx_df['foldx_outcome'].value_counts()
if foc['Destabilising'] == foldx_pos and foc['Destabilising'] == foldx_pos2:
print('\nPASS: Foldx outcome category created')
else:
print('\nFAIL: Foldx outcome category could NOT be created'
, '\nExpected number:', foldx_pos
, '\nGot:', foc[0]
, '\n======================================================')
sys.exit()
#=======================
# Deepddg
# TODO: RERUN 'gid'
#=======================
deepddg_df.shape
#--------------------------
# check if >1 chain
#--------------------------
deepddg_df.loc[:,'chain_id'].value_counts()
if len(deepddg_df.loc[:,'chain_id'].value_counts()) > 1:
print("\nChains detected: >1"
, "\nGene:", gene
, "\nChains:", deepddg_df.loc[:,'chain_id'].value_counts().index)
print('\nSelecting chain:', sel_chain, 'for gene:', gene)
deepddg_df = deepddg_df[deepddg_df['chain_id'] == sel_chain]
#--------------------------
# Drop chain id col as other targets don't have it.Check for duplicates
#--------------------------
col_to_drop = ['chain_id']
deepddg_df = deepddg_df.drop(col_to_drop, axis = 1)
#--------------------------
# Check for duplicates
#--------------------------
if len(deepddg_df['mutationinformation'].duplicated().value_counts())> 1:
print("\nFAIL: Duplicates detected in DeepDDG infile"
, "\nNo. of duplicates:"
, deepddg_df['mutationinformation'].duplicated().value_counts()[1]
, "\nformat deepDDG infile before proceeding")
sys.exit()
else:
print("\nPASS: No duplicates detected in DeepDDG infile")
#-------------------------
# scale Deepddg values
#-------------------------
# Rescale values in deepddg_change col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
deepddg_min = deepddg_df['deepddg'].min()
deepddg_max = deepddg_df['deepddg'].max()
deepddg_scale = lambda x : x/abs(deepddg_min) if x < 0 else (x/deepddg_max if x >= 0 else 'failed')
deepddg_df['deepddg_scaled'] = deepddg_df['deepddg'].apply(deepddg_scale)
print('\nRaw deepddg scores:\n', deepddg_df['deepddg']
, '\n---------------------------------------------------------------'
, '\nScaled deepddg scores:\n', deepddg_df['deepddg_scaled'])
# additional check added
dsmi = deepddg_df['deepddg_scaled'].min()
dsma = deepddg_df['deepddg_scaled'].max()
c = deepddg_df[deepddg_df['deepddg']>=0].count()
deepddg_pos = c.get(key = 'deepddg')
c2 = deepddg_df[deepddg_df['deepddg_scaled']>=0].count()
deepddg_pos2 = c2.get(key = 'deepddg_scaled')
if deepddg_pos == deepddg_pos2 and dsmi == -1 and dsma == 1:
print('\nPASS: deepddg values scaled correctly b/w -1 and 1')
else:
print('\nFAIL: deepddg values scaled numbers MISmatch'
, '\nExpected number:', deepddg_pos
, '\nGot:', deepddg_pos2
, '\n======================================================')
#--------------------------
# Deepddg outcome category
#--------------------------
deepddg_df['deepddg_outcome'] = deepddg_df['deepddg'].apply(lambda x: 'Stabilising' if x >= 0 else 'Destabilising')
deepddg_df[deepddg_df['deepddg']>=0].count()
doc = deepddg_df['deepddg_outcome'].value_counts()
if doc['Stabilising'] == deepddg_pos and doc['Stabilising'] == deepddg_pos2:
print('\nPASS: Deepddg outcome category created')
else:
print('\nFAIL: Deepddg outcome category could NOT be created'
, '\nExpected number:', deepddg_pos
, '\nGot:', doc[0]
, '\n======================================================')
sys.exit()
if deepddg_df['deepddg_scaled'].min() == -1 and deepddg_df['deepddg_scaled'].max() == 1:
print('\nPASS: Deepddg data is scaled between -1 and 1',
'\nproceeding with merge')
#=======================
# Consurf
#=======================
consurf_df.shape
# drop row 0: as it contains no value but hangover text
consurf_df = consurf_df.drop(index=0)
#----------------------
# rename colums
#----------------------
consurf_df.columns
print('\nRenaming cols and assigning pretty column names')
geneL_consurf = ['alr', 'katg', 'rpob']
if gene.lower() in geneL_consurf:
consurf_df = consurf_df.rename(columns={'POS' : 'position_consurf'})
#---------------------------
# Specify the offset
#---------------------------
print('\nAdding offset value for gene:', gene.lower())
if gene.lower() == 'alr':
offset_val = 34
print('\nUsing offset val:', offset_val)
if gene.lower() == 'katg':
offset_val = 23
print('\nUsing offset val:', offset_val)
if gene.lower() == 'rpob':
offset_val = 28
print('\nUsing offset val:', offset_val)
consurf_df['position'] = consurf_df['position_consurf'] + offset_val
else:
consurf_df = consurf_df.rename(columns={'POS' : 'position'})
consurf_df = consurf_df.rename(columns={'SEQ' : 'wild_type'
, '3LATOM': 'wt_3upper'
, 'SCORE' : 'consurf_score'
, 'COLOR' : 'consurf_colour_str'
, 'CONFIDENCEINTERVAL' : 'consurf_ci'
, 'CONFIDENCEINTERVALCOLORS' : 'consurf_ci_colour'
, 'MSADATA' : 'consurf_msa_data'
, 'RESIDUEVARIETY' : 'consurf_aa_variety'})
# quick check
if len(consurf_df) == len(rd_df):
print('\nPASS: length of consurf df is as expected'
, '\nProceeding to format consurf df')
else:
print('\nFAIL: length mismatch'
, '\nExpected nrows:', len(rd_df)
, '\nGot:', len(consurf_df))
consurf_df.dtypes
consurf_df['consurf_score'] = consurf_df['consurf_score'].astype(float)
consurf_df['consurf_colour'] = consurf_df['consurf_colour_str'].str.extract(r'(\d).*')
consurf_df['consurf_colour'] = consurf_df['consurf_colour'].astype(int)
consurf_df['consurf_colour_rev'] = consurf_df['consurf_colour_str'].str.replace(r'.\*','0')
consurf_df['consurf_colour_rev'] = consurf_df['consurf_colour_rev'].astype(int)
consurf_df['consurf_ci_upper'] = consurf_df['consurf_ci'].str.extract(r'(.*):')
consurf_df['consurf_ci_upper'] = consurf_df['consurf_ci_upper'].astype(float)
consurf_df['consurf_ci_lower'] = consurf_df['consurf_ci'].str.extract(r':(.*)')
consurf_df['consurf_ci_lower'] = consurf_df['consurf_ci_lower'].astype(float)
#consurf_df['wt_3upper_f'] = consurf_df['wt_3upper'].str.extract(r'^\w{3}(\d+.*)')
#consurf_df['wt_3upper_f']
consurf_df['wt_3upper'] = consurf_df['wt_3upper'].str.replace(r'(\d+:.*)', '')
consurf_df['chain'] = consurf_df['wt_3upper'].str.extract(r':(.*)')
#-------------------------
# scale consurf values
#-------------------------
# Rescale values in consurf_score col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
consurf_min = consurf_df['consurf_score'].min()
consurf_max = consurf_df['consurf_score'].max()
consurf_min
consurf_max
# quick check
len(consurf_df.loc[consurf_df['consurf_score'] >= 0])
len(consurf_df.loc[consurf_df['consurf_score'] < 0])
consurf_scale = lambda x : x/abs(consurf_min) if x < 0 else (x/consurf_max if x >= 0 else 'failed')
consurf_df['consurf_scaled'] = consurf_df['consurf_score'].apply(consurf_scale)
print('\nRaw consurf scores:\n', consurf_df['consurf_score']
, '\n---------------------------------------------------------------'
, '\nScaled consurf scores:\n', consurf_df['consurf_scaled'])
# additional check added
csmi = consurf_df['consurf_scaled'].min()
csma = consurf_df['consurf_scaled'].max()
c = consurf_df[consurf_df['consurf_score']>=0].count()
consurf_pos = c.get(key = 'consurf_score')
c2 = consurf_df[consurf_df['consurf_scaled']>=0].count()
consurf_pos2 = c2.get(key = 'consurf_scaled')
if consurf_pos == consurf_pos2 and csmi == -1 and csma == 1:
print('\nPASS: Consurf values scaled correctly b/w -1 and 1')
else:
print('\nFAIL: Consurf values scaled numbers MISmatch'
, '\nExpected number:', consurf_pos
, '\nGot:', consurf_pos2
, '\n======================================================')
consurf_df.dtypes
consurf_df.columns
#---------------------------
# select columns
# (and also determine order)
#---------------------------
consurf_df_f = consurf_df[['position'
, 'wild_type'
, 'chain'
, 'wt_3upper'
, 'consurf_score'
, 'consurf_scaled'
, 'consurf_colour'
, 'consurf_colour_rev'
, 'consurf_ci_upper'
, 'consurf_ci_lower'
, 'consurf_ci_colour'
, 'consurf_msa_data'
, 'consurf_aa_variety']]
#=======================
# SNAP2
#=======================
snap2_df.shape
#----------------------
# rename colums
#----------------------
geneL_snap2 = ['alr', 'katg', 'rpob']
if gene.lower() in geneL_snap2:
print('\nReading SNAP2 for gene:', gene.lower()
, '\nOffset column also being read'
, '\nRenaming columns...'
, '\nColumn mutationinformation exists. Renaming SNAP2 column variant --> mutationinformation')
snap2_df = snap2_df.rename(columns = {'mutationinformation': 'mutationinformation'
, 'Variant' : 'mutationinformation_snap2'
, 'Predicted Effect' : 'snap2_outcome'
, 'Score' : 'snap2_score'
, 'Expected Accuracy': 'snap2_accuracy_pc'})
else:
print('\nReading SNAP2 for gene:', gene.lower()
, '\nNo offset column for SNAP2'
, '\nRenaming columns...'
, '\nRenaming SNAP2 column variant --> mutationinformation')
snap2_df = snap2_df.rename(columns = {'Variant' : 'mutationinformation'
, 'Predicted Effect' : 'snap2_outcome'
, 'Score' : 'snap2_score'
, 'Expected Accuracy': 'snap2_accuracy_pc'})
snap2_df.columns
snap2_df.head()
snap2_df.dtypes
snap2_df['snap2_accuracy_pc'] = snap2_df['snap2_accuracy_pc'].str.replace('%','')
snap2_df['snap2_accuracy_pc'] = snap2_df['snap2_accuracy_pc'].astype(int)
#-------------------------
# scale snap2 values
#-------------------------
# Rescale values in snap2_score col b/w -1 and 1 so negative numbers
# stay neg and pos numbers stay positive
snap2_min = snap2_df['snap2_score'].min()
snap2_max = snap2_df['snap2_score'].max()
snap2_min
snap2_max
# quick check
len(snap2_df.loc[snap2_df['snap2_score'] >= 0])
len(snap2_df.loc[snap2_df['snap2_score'] < 0])
snap2_scale = lambda x : x/abs(snap2_min) if x < 0 else (x/snap2_max if x >= 0 else 'failed')
snap2_df['snap2_scaled'] = snap2_df['snap2_score'].apply(snap2_scale)
print('\nRaw snap2 scores:\n', snap2_df['snap2_score']
, '\n---------------------------------------------------------------'
, '\nScaled snap2 scores:\n', snap2_df['snap2_scaled'])
# additional check added
ssmi = snap2_df['snap2_scaled'].min()
ssma = snap2_df['snap2_scaled'].max()
sn = snap2_df[snap2_df['snap2_score']>=0].count()
snap2_pos = sn.get(key = 'snap2_score')
sn2 = snap2_df[snap2_df['snap2_scaled']>=0].count()
snap2_pos2 = sn2.get(key = 'snap2_scaled')
if snap2_pos == snap2_pos2 and csmi == -1 and csma == 1:
print('\nPASS: Snap2 values scaled correctly b/w -1 and 1')
else:
print('\nFAIL: snap2 values scaled numbers MISmatch'
, '\nExpected number:', snap2_pos
, '\nGot:', snap2_pos2
, '\n======================================================')
#---------------------------
# select columns
# (and also determine order)
#---------------------------
snap2_df.dtypes
snap2_df.columns
geneL_snap2 = ['alr', 'katg', 'rpob']
if gene.lower() in geneL_snap2:
print('\nSelecting cols SNAP2 for gene:', gene.lower())
snap2_df_f = snap2_df[['mutationinformation'
, 'mutationinformation_snap2'
, 'snap2_score'
, 'snap2_scaled'
, 'snap2_accuracy_pc'
, 'snap2_outcome']]
else:
print('\nSelecting cols SNAP2 for gene:', gene.lower())
snap2_df_f = snap2_df[['mutationinformation'
, 'snap2_score'
, 'snap2_scaled'
, 'snap2_accuracy_pc'
, 'snap2_outcome']]
#%%============================================================================
# Now merges begin
print('==================================='
, '\nFirst merge: mcsm + foldx'
, '\n===================================')
mcsm_df.shape
# add 3 lowercase aa code for wt and mutant
get_aa_3lower(df = mcsm_df
, wt_colname = 'wild_type'
, mut_colname = 'mutant_type'
, col_wt = 'wt_aa_3lower'
, col_mut = 'mut_aa_3lower')
#mcsm_df.columns = mcsm_df.columns.str.lower()
# foldx_df.shape
#mcsm_foldx_dfs = combine_dfs_with_checks(mcsm_df, foldx_df, my_join = "outer")
merging_cols_m1 = detect_common_cols(mcsm_df, foldx_df)
mcsm_foldx_dfs = pd.merge(mcsm_df
, foldx_df
, on = merging_cols_m1
, how = "outer")
ncols_m1 = len(mcsm_foldx_dfs.columns)
print('\n\nResult of first merge:', mcsm_foldx_dfs.shape
, '\n===================================================================')
mcsm_foldx_dfs[merging_cols_m1].apply(len)
mcsm_foldx_dfs[merging_cols_m1].apply(len) == len(mcsm_foldx_dfs)
#%% for embB and any other targets where mCSM-lig hasn't run for ALL nsSNPs.
# Get the empty cells to be full of meaningful info
if mcsm_foldx_dfs.loc[:,'wild_type': 'mut_aa_3lower'].isnull().values.any():
print ('\nNAs detected in mcsm cols after merge.'
, '\nCleaning data before merging deepddg_df')
##############################
# Extract relevant col values
# code to one
##############################
# wt_reg = r'(^[A-Z]{1})'
# print('wild_type:', wt_reg)
# mut_reg = r'[0-9]+(\w{1})$'
# print('mut type:', mut_reg)
mcsm_foldx_dfs['wild_type'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'(^[A-Z]{1})')
mcsm_foldx_dfs['position'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'([0-9]+)')
mcsm_foldx_dfs['mutant_type'] = mcsm_foldx_dfs.loc[:,'mutationinformation'].str.extract(r'[0-9]+([A-Z]{1})$')
# BEWARE: Bit of logic trap i.e if nan comes first
# in chain column, then nan will be populated!
#df['foo'] = df['chain'].unique()[0]
mcsm_foldx_dfs['chain'] = np.where(mcsm_foldx_dfs[['chain']].isnull().all(axis=1)
, mcsm_foldx_dfs['chain'].unique()[0]
, mcsm_foldx_dfs['chain'])
mcsm_foldx_dfs['ligand_id'] = np.where(mcsm_foldx_dfs[['ligand_id']].isnull().all(axis=1)
, mcsm_foldx_dfs['ligand_id'].unique()[0]
, mcsm_foldx_dfs['ligand_id'])
#--------------------------------------------------------------------------
mcsm_foldx_dfs['wild_pos'] = mcsm_foldx_dfs.loc[:,'wild_type'] + mcsm_foldx_dfs.loc[:,'position'].astype(int).apply(str)
mcsm_foldx_dfs['wild_chain_pos'] = mcsm_foldx_dfs.loc[:,'wild_type'] + mcsm_foldx_dfs.loc[:,'chain'] + mcsm_foldx_dfs.loc[:,'position'].astype(int).apply(str)
#############
# Map 1 letter
# code to 3Upper
#############
# initialise a sub dict that is lookup dict for
# 3-LETTER aa code to 1-LETTER aa code
lookup_dict = dict()
for k, v in oneletter_aa_dict.items():
lookup_dict[k] = v['three_letter_code_lower']
wt = mcsm_foldx_dfs['wild_type'].squeeze() # converts to a series that map works on
mcsm_foldx_dfs['wt_aa_3lower'] = wt.map(lookup_dict)
mut = mcsm_foldx_dfs['mutant_type'].squeeze()
mcsm_foldx_dfs['mut_aa_3lower'] = mut.map(lookup_dict)
else:
print('\nNo NAs detected in mcsm_fold_dfs. Proceeding to merge deepddg_df')
#%%
print('==================================='
, '\nSecond merge: mcsm_foldx_dfs + deepddg'
, '\n===================================')
# merge with mcsm_foldx_dfs and deepddg_df
mcsm_foldx_deepddg_dfs = pd.merge(mcsm_foldx_dfs
, deepddg_df
, on = 'mutationinformation'
, how = "left")
mcsm_foldx_deepddg_dfs['deepddg_outcome'].value_counts()
ncols_deepddg_merge = len(mcsm_foldx_deepddg_dfs.columns)
mcsm_foldx_deepddg_dfs['position'] = mcsm_foldx_deepddg_dfs['position'].astype('int64')
#%%============================================================================
#FIXME: select df with 'chain' to allow corret dim merging!
print('==================================='
, '\nThird merge: dssp + kd'
, '\n===================================')
dssp_df_raw.shape
kd_df.shape
rd_df.shape
dssp_df = dssp_df_raw[dssp_df_raw['chain_id'] == sel_chain]
dssp_df['chain_id'].value_counts()
#dssp_kd_dfs = combine_dfs_with_checks(dssp_df, kd_df, my_join = "outer")
merging_cols_m2 = detect_common_cols(dssp_df, kd_df)
dssp_kd_dfs = pd.merge(dssp_df
, kd_df
, on = merging_cols_m2
#, how = "outer")
, how = "inner")
print('\n\nResult of third merge:', dssp_kd_dfs.shape
, '\n===================================================================')
#%%============================================================================
print('==================================='
, '\nFourth merge: third merge + rd_df'
, '\ndssp_kd_dfs + rd_df'
, '\n===================================')
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = "outer")
merging_cols_m3 = detect_common_cols(dssp_kd_dfs, rd_df)
dssp_kd_rd_dfs = pd.merge(dssp_kd_dfs
, rd_df
, on = merging_cols_m3
, how = "outer")
ncols_m3 = len(dssp_kd_rd_dfs.columns)
print('\n\nResult of Third merge:', dssp_kd_rd_dfs.shape
, '\n===================================================================')
dssp_kd_rd_dfs[merging_cols_m3].apply(len)
dssp_kd_rd_dfs[merging_cols_m3].apply(len) == len(dssp_kd_rd_dfs)
#%%============================================================================
print('==================================='
, '\nFourth merge*: fourth merge + consurf_df'
, '\dssp_kd_rd_dfs + consurf_df'
, '\n===================================')
#dssp_kd_rd_dfs = combine_dfs_with_checks(dssp_kd_dfs, rd_df, my_join = "outer")
merging_cols_m3_v2 = detect_common_cols(dssp_kd_rd_dfs, consurf_df)
dssp_kd_rd_con_dfs = pd.merge(dssp_kd_rd_dfs
, consurf_df
, on = merging_cols_m3_v2
, how = "outer")
ncols_m3_v2 = len(dssp_kd_rd_con_dfs.columns)
print('\n\nResult of fourth merge*:', dssp_kd_rd_con_dfs.shape
, '\n===================================================================')
dssp_kd_rd_con_dfs[merging_cols_m3_v2].apply(len)
dssp_kd_rd_con_dfs[merging_cols_m3_v2].apply(len) == len(dssp_kd_rd_con_dfs)
#%%============================================================================
print('======================================='
, '\nFifth merge: Second merge + fourth merge'
, '\nmcsm_foldx_dfs + dssp_kd_rd_dfs'
, '\n=======================================')
#combined_df = combine_dfs_with_checks(mcsm_foldx_dfs, dssp_kd_rd_dfs, my_join = "inner")
#merging_cols_m4 = detect_common_cols(mcsm_foldx_dfs, dssp_kd_rd_dfs)
#combined_df = pd.merge(mcsm_foldx_dfs, dssp_kd_rd_dfs, on = merging_cols_m4, how = "inner")
#combined_df_expected_cols = ncols_m1 + ncols_m3 - len(merging_cols_m4)
# with deepddg values
merging_cols_m4 = detect_common_cols(mcsm_foldx_deepddg_dfs, dssp_kd_rd_dfs)
combined_df = pd.merge(mcsm_foldx_deepddg_dfs
, dssp_kd_rd_dfs
, on = merging_cols_m4
, how = "inner")
combined_df_expected_cols = ncols_deepddg_merge + ncols_m3 - len(merging_cols_m4)
# FIXME: check logic, doesn't effect anything else!
if not gene == "embB":
print("\nGene is:", gene)
if len(combined_df) == len(mcsm_df) and len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nNo. of rows combined_df:', len(combined_df)
, '\nNo. of cols combined_df:', len(combined_df.columns))
else:
#sys.exit('FAIL: check individual df merges')
print("\nGene is:", gene
, "\ncombined_df length:", len(combined_df)
, "\nmcsm_df_length:", len(mcsm_df)
)
if len(combined_df.columns) == combined_df_expected_cols:
print('PASS: successfully combined 5 dfs'
, '\nNo. of rows combined_df:', len(combined_df)
, '\nNo. of cols combined_df:', len(combined_df.columns))
else:
sys.exit('FAIL: check individual merges')
print('\nResult of Fourth merge:', combined_df.shape
, '\n===================================================================')
combined_df[merging_cols_m4].apply(len)
combined_df[merging_cols_m4].apply(len) == len(combined_df)
#%%============================================================================
# Format the combined df columns
combined_df_colnames = combined_df.columns
# check redundant columns
combined_df['chain'].equals(combined_df['chain_id'])
combined_df['wild_type'].equals(combined_df['wild_type_kd']) # has nan
combined_df['wild_type'].equals(combined_df['wild_type_dssp'])
# sanity check
foo = combined_df[['wild_type', 'wild_type_kd', 'wt_3letter_caps', 'wt_aa_3lower', 'mut_aa_3lower']]
# Drop cols
cols_to_drop = ['chain_id', 'wild_type_kd', 'wild_type_dssp', 'wt_3letter_caps']
combined_df_clean = combined_df.drop(cols_to_drop, axis = 1)
combined_df_clean.columns
del(foo)
#%%============================================================================
# Output columns
out_filename_stab_struc = gene.lower() + '_comb_stab_struc_params.csv'
outfile_stab_struc = outdir + out_filename_stab_struc
print('Output filename:', outfile_stab_struc
, '\n===================================================================')
combined_df_clean
# write csv
print('\nWriting file: combined stability and structural parameters')
combined_df_clean.to_csv(outfile_stab_struc, index = False)
print('\nFinished writing file:'
, '\nNo. of rows:', combined_df_clean.shape[0]
, '\nNo. of cols:', combined_df_clean.shape[1])
#%%=====================================================================
print('\n======================================='
, '\nFifth merge:'
, '\ncombined_df_clean + afor_df '
, '\n=======================================')
afor_cols = afor_df.columns
afor_df.shape
# create a mapping from the gwas mutation column i.e <gene_match>_abcXXXrst
#----------------------
# call get_aa_upper():
# adds 3 more cols with one letter aa code
#----------------------
get_aa_1upper(df = afor_df
, gwas_mut_colname = 'mutation'
, wt_colname = 'wild_type'
, pos_colname = 'position'
, mut_colname = 'mutant_type')
afor_df['mutationinformation'] = afor_df['wild_type'] + afor_df['position'].map(str) + afor_df['mutant_type']
afor_cols = afor_df.columns
merging_cols_m5 = detect_common_cols(combined_df_clean, afor_df)
# remove position so that merging can take place without dtype conflicts
merging_cols_m5.remove('position')
# drop position column from afor_df
afor_df = afor_df.drop(['position'], axis = 1)
afor_cols = afor_df.columns
# merge
combined_stab_afor = pd.merge(combined_df_clean
, afor_df
, on = merging_cols_m5
, how = "left")
comb_afor_df_cols = combined_stab_afor.columns
comb_afor_expected_cols = len(combined_df_clean.columns) + len(afor_df.columns) - len(merging_cols_m5)
if len(combined_stab_afor) == len(combined_df_clean) and len(combined_stab_afor.columns) == comb_afor_expected_cols:
print('\nPASS: successfully combined 6 dfs'
, '\nNo. of rows combined_stab_afor:', len(combined_stab_afor)
, '\nNo. of cols combined_stab_afor:', len(combined_stab_afor.columns))
else:
sys.exit('\nFAIL: check individual df merges')
print('\n\nResult of Fifth merge:', combined_stab_afor.shape
, '\n===================================================================')
combined_stab_afor[merging_cols_m5].apply(len)
combined_stab_afor[merging_cols_m5].apply(len) == len(combined_stab_afor)
if (len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum()) == len(afor_df):
print('\nPASS: Merge successful for af and or with matched numbers')
if len(combined_stab_afor) - combined_stab_afor['mutation'].isna().sum() == len(afor_df)-len(afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])]):
print("\nMismatched numbers, OR df has extra snps not found in mcsm df"
, "\nNo. of nsSNPs with valid ORs:", len(afor_df)
, "\nNo. of mcsm nsSNPs: ", len(combined_df_clean)
, "\nNo. of OR nsSNPs not in mCSM df:"
, len(afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])])
, "\nWriting these mutations to file:")
orsnps_notmcsm = afor_df[~afor_df['mutation'].isin(combined_stab_afor['mutation'])]
else:
sys.exit('\nFAIL: merge unsuccessful for af and or')
#%%============================================================================
# Output columns: when dynamut, dynamut2 and others weren't being combined
out_filename_comb_afor = gene.lower() + '_comb_afor.csv'
outfile_comb_afor = outdir + out_filename_comb_afor
print('Output filename:', outfile_comb_afor
, '\n===================================================================')
# write csv
print('Writing file: combined stability and afor')
combined_stab_afor.to_csv(outfile_comb_afor, index = False)
print('\nFinished writing file:'
, '\nNo. of rows:', combined_stab_afor.shape[0]
, '\nNo. of cols:', combined_stab_afor.shape[1])
#%%============================================================================
# combine dynamut, dynamut2, and mcsm_na
#dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df] # gid
if gene.lower() == "pnca":
dfs_list = [dynamut2_df]
if gene.lower() == "gid":
dfs_list = [dynamut_df, dynamut2_df, mcsm_na_df]
if gene.lower() == "embb":
dfs_list = [dynamut2_df, mcsm_ppi2_df]
if gene.lower() == "katg":
dfs_list = [dynamut2_df]
if gene.lower() == "rpob":
dfs_list = [dynamut2_df, mcsm_na_df]
if gene.lower() == "alr":
dfs_list = [dynamut2_df, mcsm_ppi2_df]
# noticed that with revised rpoB that mcsm-NA had one less position,
# Hence this condition else the last check fails with discrepancy for expected_nrows
if len(dfs_list) > 1:
join_type = 'outer'
else:
join_type = 'inner'
print('\nUsing join type: "', join_type, '" for the last but one merge')
dfs_merged = reduce(lambda left,right: pd.merge(left
, right
, on = ['mutationinformation']
#, how = 'inner')
, how = join_type)
, dfs_list)
# drop excess columns
drop_cols = detect_common_cols(dfs_merged, combined_stab_afor)
drop_cols.remove('mutationinformation')
dfs_merged_clean = dfs_merged.drop(drop_cols, axis = 1)
merging_cols_m6 = detect_common_cols(dfs_merged_clean, combined_stab_afor)
len(dfs_merged_clean.columns)
len(combined_stab_afor.columns)
combined_all_params = pd.merge(combined_stab_afor
, dfs_merged_clean
, on = merging_cols_m6
, how = "inner")
expected_ncols = len(dfs_merged_clean.columns) + len(combined_stab_afor.columns) - len(merging_cols_m6)
expected_nrows = len(combined_stab_afor)
if len(combined_all_params.columns) == expected_ncols and len(combined_all_params) == expected_nrows:
print('\nPASS: All dfs combined')
else:
print('\nFAIL:lengths mismatch'
, '\nExpected ncols:', expected_ncols
, '\nGot:', len(dfs_merged_clean.columns)
, '\nExpected nrows:', expected_nrows
, '\nGot:', len(dfs_merged_clean) )
# FIXME: need to extract 'cols_to_drop' programatically
# Drop cols
if combined_all_params.columns.str.contains(r'_x$|_y$', regex = True).any():
print('\nDuplicate column names detected...'
, '\nDropping these before writing file')
extra_cols_to_drop = list(combined_all_params.columns.str.extract(r'(.*_x$|.*_y$)', expand = True).dropna()[0])
print('\nTotal cols:', len(combined_all_params.columns)
,'\nDropping:', len(extra_cols_to_drop), 'columns')
#extra_cols_to_drop = ['chain_x', 'chain_y']
combined_all_params = combined_all_params.drop(extra_cols_to_drop, axis = 1)
else:
print('\nNo duplicate column names detected, just writing file'
, '\nTotal cols:', len(combined_all_params.columns) )
#del(foo)
#%% Done for gid on 10/09/2021
# write csv
print('Writing file: all params')
combined_all_params.to_csv(outfile_comb, index = False)
print('\nFinished writing file:'
, '\nNo. of rows:', combined_all_params.shape[0]
, '\nNo. of cols:', combined_all_params.shape[1])
#%% end of script