175 lines
6.5 KiB
Python
Executable file
175 lines
6.5 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Wed Jun 10 11:13:49 2020
|
|
|
|
@author: tanu
|
|
"""
|
|
#=======================================================================
|
|
#%% useful links
|
|
#https://chrisalbon.com/python/data_wrangling/pandas_join_merge_dataframe/
|
|
#https://kanoki.org/2019/11/12/how-to-use-regex-in-pandas/
|
|
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
|
|
#=======================================================================
|
|
import os, sys
|
|
import pandas as pd
|
|
import numpy as np
|
|
import re
|
|
import argparse
|
|
|
|
homedir = os.path.expanduser('~')
|
|
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
|
#=======================================================================
|
|
#%% command line args
|
|
arg_parser = argparse.ArgumentParser()
|
|
|
|
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = None)
|
|
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = None)
|
|
|
|
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
|
|
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
|
|
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
|
|
|
|
# FIXME: remove defaults
|
|
#arg_parser.add_argument('-sc', '--start_coord', help = 'start of coding region (cds) of gene', default = None, type = int) # pnca cds
|
|
#arg_parser.add_argument('-ec', '--end_coord', help = 'end of coding region (cds) of gene', default = None, type = int) # pnca cds
|
|
|
|
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
|
|
|
|
args = arg_parser.parse_args()
|
|
#=======================================================================
|
|
#%% variables
|
|
#gene = 'pncA'
|
|
#drug = 'pyrazinamide'
|
|
#start_cds = 2288681
|
|
#end_cds = 2289241
|
|
#%%=====================================================================
|
|
# Command line options
|
|
gene = args.gene
|
|
drug = args.drug
|
|
gene_match = gene + '_p.'
|
|
|
|
datadir = args.datadir
|
|
indir = args.input_dir
|
|
outdir = args.output_dir
|
|
|
|
#start_cds = args.start_coord
|
|
#end_cds = args.end_coord
|
|
|
|
#%%=======================================================================
|
|
#==============
|
|
# directories
|
|
#==============
|
|
if not datadir:
|
|
datadir = homedir + '/' + 'git/Data'
|
|
|
|
if not indir:
|
|
indir = datadir + '/' + drug + '/input'
|
|
|
|
if not outdir:
|
|
outdir = datadir + '/' + drug + '/output'
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.txt'
|
|
#gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.csv'
|
|
gene_info = indir + '/' + gene_info_filename
|
|
print('gene info file: ', gene_info
|
|
, '\n============================================================')
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
snpinfo_formatted_filename = 'ns' + gene.lower() + '_snp_info_f.csv'
|
|
snpinfo_formatted = outdir + '/' + snpinfo_formatted_filename
|
|
print('Output file: ', snpinfo_formatted
|
|
, '\n============================================================')
|
|
|
|
#%% read files: preformatted using bash
|
|
|
|
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 10
|
|
|
|
#%% extract mut info into three cols
|
|
df_ncols = len(info_df2.columns)
|
|
print('Dim of df to add cols to:', df_ncols)
|
|
|
|
# column names already present, wrap this in a if and perform sanity check
|
|
ncols_add = 0
|
|
if not 'wild_type' in info_df2.columns:
|
|
print('Extracting and adding column: wild_type'
|
|
, '\n===============================================================')
|
|
info_df2['wild_type'] = info_df2['mut_info_f1'].str.extract('(\w{1})>')
|
|
ncols_add+=1
|
|
|
|
if not 'position' in info_df2.columns:
|
|
print('Extracting and adding column: position'
|
|
, '\n===============================================================')
|
|
info_df2['position'] = info_df2['mut_info_f1'].str.extract('(\d+)')
|
|
#info_df2['position'] = info_df2[:,'mut_info_f1'].str.extract('(\d+)')
|
|
ncols_add+=1
|
|
|
|
if not 'mutant_type' in info_df2.columns:
|
|
print('Extracting and adding column: mutant_type'
|
|
, '\n================================================================')
|
|
info_df2['mutant_type'] = info_df2['mut_info_f1'].str.extract('>\d+(\w{1})')
|
|
ncols_add+=1
|
|
|
|
if not 'mutationinformation' in info_df2.columns:
|
|
print('combining to create column: mutationinformation'
|
|
, '\n===============================================================')
|
|
info_df2['mutationinformation'] = info_df2['wild_type'] + info_df2['position'] + info_df2['mutant_type']
|
|
ncols_add+=1
|
|
|
|
print('No. of cols added:', ncols_add)
|
|
|
|
if len(info_df2.columns) == df_ncols + ncols_add:
|
|
print('PASS: mcsm style muts added to df'
|
|
, '\n===============================================================')
|
|
else:
|
|
print('FAIL: No. of cols mismatch'
|
|
,'\nOriginal length:', df_ncols
|
|
, '\nExpected no. of cols:', df_ncols + ncols_add
|
|
, '\nGot:', len(info_df2.columns))
|
|
sys.exit()
|
|
|
|
del(df_ncols, ncols_add)
|
|
#%% now adding mutation style = <gene>_p.abc1cde
|
|
info_df2['mutation'] = gene.lower() + '_' + info_df2['mut_info_f2'].astype(str)
|
|
# convert to lowercase
|
|
info_df2['mutation'] = info_df2['mutation'].str.lower()
|
|
|
|
# quick sanity check
|
|
check = info_df2['mutation'].value_counts().value_counts() == info_df2['mut_info_f2'].value_counts().value_counts()
|
|
|
|
if check.all():
|
|
print('PASS: added column "mutation" containing mutation format: <gene>_p.abc1cde')
|
|
else:
|
|
print('FAIL: could not add "mutation" column!')
|
|
sys.exit()
|
|
|
|
#%% removing unnecessary columns
|
|
cols_to_remove = ['chromosome_text', 'mut_region', 'symbol']
|
|
|
|
info_df2_formatted = info_df2.drop(cols_to_remove, axis = 1)
|
|
|
|
if len(info_df2_formatted.columns) == info_df2.shape[1] - len(cols_to_remove):
|
|
print('PASS: columns successfully dropped and dim match')
|
|
else:
|
|
print('FAIL: could not drop columns!')
|
|
sys.exit()
|
|
|
|
#%% write file
|
|
print('\n====================================================================='
|
|
, '\nWriting output file:\n', info_df2_formatted
|
|
, '\nNo. of rows:', len(info_df2_formatted)
|
|
, '\nNo. of cols:', len(info_df2_formatted.columns))
|
|
|
|
info_df2_formatted.to_csv(snpinfo_formatted , index = False)
|
|
|
|
#%% diff b/w allele0 and 1: or_df
|
|
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
|
|
#df = or_df.iloc[[5, 15, 17, 19, 34]]
|
|
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
|
|
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
|
|
|