LSHTM_analysis/scripts/snpinfo_format.py

175 lines
6.5 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 10 11:13:49 2020
@author: tanu
"""
#=======================================================================
#%% useful links
#https://chrisalbon.com/python/data_wrangling/pandas_join_merge_dataframe/
#https://kanoki.org/2019/11/12/how-to-use-regex-in-pandas/
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
#=======================================================================
import os, sys
import pandas as pd
import numpy as np
import re
import argparse
homedir = os.path.expanduser('~')
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help = 'drug name', default = None)
arg_parser.add_argument('-g', '--gene', help = 'gene name (case sensitive)', default = None)
arg_parser.add_argument('--datadir', help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
# FIXME: remove defaults
#arg_parser.add_argument('-sc', '--start_coord', help = 'start of coding region (cds) of gene', default = None, type = int) # pnca cds
#arg_parser.add_argument('-ec', '--end_coord', help = 'end of coding region (cds) of gene', default = None, type = int) # pnca cds
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
#=======================================================================
#%% variables
#gene = 'pncA'
#drug = 'pyrazinamide'
#start_cds = 2288681
#end_cds = 2289241
#%%=====================================================================
# Command line options
gene = args.gene
drug = args.drug
gene_match = gene + '_p.'
datadir = args.datadir
indir = args.input_dir
outdir = args.output_dir
#start_cds = args.start_coord
#end_cds = args.end_coord
#%%=======================================================================
#==============
# directories
#==============
if not datadir:
datadir = homedir + '/' + 'git/Data'
if not indir:
indir = datadir + '/' + drug + '/input'
if not outdir:
outdir = datadir + '/' + drug + '/output'
#=======
# input
#=======
gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.txt'
#gene_info_filename = 'ns'+ gene.lower()+ '_snp_info.csv'
gene_info = indir + '/' + gene_info_filename
print('gene info file: ', gene_info
, '\n============================================================')
#=======
# output
#=======
snpinfo_formatted_filename = 'ns' + gene.lower() + '_snp_info_f.csv'
snpinfo_formatted = outdir + '/' + snpinfo_formatted_filename
print('Output file: ', snpinfo_formatted
, '\n============================================================')
#%% read files: preformatted using bash
info_df2 = pd.read_csv(gene_info, sep = '\t', header = 0) #447, 10
#%% extract mut info into three cols
df_ncols = len(info_df2.columns)
print('Dim of df to add cols to:', df_ncols)
# column names already present, wrap this in a if and perform sanity check
ncols_add = 0
if not 'wild_type' in info_df2.columns:
print('Extracting and adding column: wild_type'
, '\n===============================================================')
info_df2['wild_type'] = info_df2['mut_info_f1'].str.extract('(\w{1})>')
ncols_add+=1
if not 'position' in info_df2.columns:
print('Extracting and adding column: position'
, '\n===============================================================')
info_df2['position'] = info_df2['mut_info_f1'].str.extract('(\d+)')
#info_df2['position'] = info_df2[:,'mut_info_f1'].str.extract('(\d+)')
ncols_add+=1
if not 'mutant_type' in info_df2.columns:
print('Extracting and adding column: mutant_type'
, '\n================================================================')
info_df2['mutant_type'] = info_df2['mut_info_f1'].str.extract('>\d+(\w{1})')
ncols_add+=1
if not 'mutationinformation' in info_df2.columns:
print('combining to create column: mutationinformation'
, '\n===============================================================')
info_df2['mutationinformation'] = info_df2['wild_type'] + info_df2['position'] + info_df2['mutant_type']
ncols_add+=1
print('No. of cols added:', ncols_add)
if len(info_df2.columns) == df_ncols + ncols_add:
print('PASS: mcsm style muts added to df'
, '\n===============================================================')
else:
print('FAIL: No. of cols mismatch'
,'\nOriginal length:', df_ncols
, '\nExpected no. of cols:', df_ncols + ncols_add
, '\nGot:', len(info_df2.columns))
sys.exit()
del(df_ncols, ncols_add)
#%% now adding mutation style = <gene>_p.abc1cde
info_df2['mutation'] = gene.lower() + '_' + info_df2['mut_info_f2'].astype(str)
# convert to lowercase
info_df2['mutation'] = info_df2['mutation'].str.lower()
# quick sanity check
check = info_df2['mutation'].value_counts().value_counts() == info_df2['mut_info_f2'].value_counts().value_counts()
if check.all():
print('PASS: added column "mutation" containing mutation format: <gene>_p.abc1cde')
else:
print('FAIL: could not add "mutation" column!')
sys.exit()
#%% removing unnecessary columns
cols_to_remove = ['chromosome_text', 'mut_region', 'symbol']
info_df2_formatted = info_df2.drop(cols_to_remove, axis = 1)
if len(info_df2_formatted.columns) == info_df2.shape[1] - len(cols_to_remove):
print('PASS: columns successfully dropped and dim match')
else:
print('FAIL: could not drop columns!')
sys.exit()
#%% write file
print('\n====================================================================='
, '\nWriting output file:\n', info_df2_formatted
, '\nNo. of rows:', len(info_df2_formatted)
, '\nNo. of cols:', len(info_df2_formatted.columns))
info_df2_formatted.to_csv(snpinfo_formatted , index = False)
#%% diff b/w allele0 and 1: or_df
#https://stackoverflow.com/questions/40348541/pandas-diff-with-string
#df = or_df.iloc[[5, 15, 17, 19, 34]]
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)
#df[['alt_allele0','ref_allele1']].ne(df[['alt_allele0','ref_allele1']].shift()).any(axis=1).astype(int)