594 lines
25 KiB
Python
Executable file
594 lines
25 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Fri Mar 4 15:25:33 2022
|
|
|
|
@author: tanu
|
|
"""
|
|
#%%
|
|
import os, sys
|
|
import pandas as pd
|
|
import numpy as np
|
|
import pprint as pp
|
|
from copy import deepcopy
|
|
from sklearn import linear_model
|
|
from sklearn import datasets
|
|
from collections import Counter
|
|
|
|
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
|
|
from sklearn.linear_model import RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier
|
|
|
|
from sklearn.naive_bayes import BernoulliNB
|
|
from sklearn.neighbors import KNeighborsClassifier
|
|
from sklearn.svm import SVC
|
|
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
|
|
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier, GradientBoostingClassifier, BaggingClassifier
|
|
from sklearn.naive_bayes import GaussianNB
|
|
from sklearn.gaussian_process import GaussianProcessClassifier, kernels
|
|
from sklearn.gaussian_process.kernels import RBF, DotProduct, Matern, RationalQuadratic, WhiteKernel
|
|
|
|
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis, QuadraticDiscriminantAnalysis
|
|
from sklearn.neural_network import MLPClassifier
|
|
|
|
from sklearn.svm import SVC
|
|
from xgboost import XGBClassifier
|
|
from sklearn.naive_bayes import MultinomialNB
|
|
from sklearn.preprocessing import StandardScaler, MinMaxScaler, OneHotEncoder
|
|
|
|
from sklearn.compose import ColumnTransformer
|
|
from sklearn.compose import make_column_transformer
|
|
|
|
from sklearn.metrics import make_scorer, confusion_matrix, accuracy_score, balanced_accuracy_score, precision_score, average_precision_score, recall_score
|
|
from sklearn.metrics import roc_auc_score, roc_curve, f1_score, matthews_corrcoef, jaccard_score, classification_report
|
|
|
|
# added
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score, LeaveOneOut, KFold, RepeatedKFold, cross_val_predict
|
|
|
|
from sklearn.model_selection import train_test_split, cross_validate, cross_val_score
|
|
from sklearn.model_selection import StratifiedKFold,RepeatedStratifiedKFold, RepeatedKFold
|
|
|
|
from sklearn.pipeline import Pipeline, make_pipeline
|
|
|
|
from sklearn.feature_selection import RFE, RFECV
|
|
|
|
import itertools
|
|
import seaborn as sns
|
|
import matplotlib.pyplot as plt
|
|
|
|
from statistics import mean, stdev, median, mode
|
|
|
|
from imblearn.over_sampling import RandomOverSampler
|
|
from imblearn.under_sampling import RandomUnderSampler
|
|
from imblearn.over_sampling import SMOTE
|
|
from sklearn.datasets import make_classification
|
|
from imblearn.combine import SMOTEENN
|
|
from imblearn.combine import SMOTETomek
|
|
|
|
from imblearn.over_sampling import SMOTENC
|
|
from imblearn.under_sampling import EditedNearestNeighbours
|
|
from imblearn.under_sampling import RepeatedEditedNearestNeighbours
|
|
|
|
from sklearn.model_selection import GridSearchCV
|
|
from sklearn.base import BaseEstimator
|
|
from sklearn.impute import KNNImputer as KNN
|
|
import json
|
|
import argparse
|
|
import re
|
|
import itertools
|
|
from sklearn.model_selection import LeaveOneGroupOut
|
|
from sklearn.decomposition import PCA
|
|
from sklearn.naive_bayes import ComplementNB
|
|
from sklearn.dummy import DummyClassifier
|
|
|
|
#%% GLOBALS
|
|
#rs = {'random_state': 42} # INSIDE FUNCTION CALL NOW
|
|
#njobs = {'n_jobs': os.cpu_count() } # the number of jobs should equal the number of CPU cores
|
|
|
|
scoring_fn = ({ 'mcc' : make_scorer(matthews_corrcoef)
|
|
, 'fscore' : make_scorer(f1_score)
|
|
, 'precision' : make_scorer(precision_score)
|
|
, 'recall' : make_scorer(recall_score)
|
|
, 'accuracy' : make_scorer(accuracy_score)
|
|
, 'roc_auc' : make_scorer(roc_auc_score)
|
|
, 'jcc' : make_scorer(jaccard_score)
|
|
})
|
|
# for sel_cv INSIDE FUNCTION CALL NOW
|
|
#skf_cv = StratifiedKFold(n_splits = 10
|
|
# #, shuffle = False, random_state= None)
|
|
# , shuffle = True, **rs)
|
|
|
|
#rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|
# , n_repeats = 3
|
|
# , **rs)
|
|
|
|
mcc_score_fn = {'mcc': make_scorer(matthews_corrcoef)}
|
|
jacc_score_fn = {'jcc': make_scorer(jaccard_score)}
|
|
|
|
###############################################################################
|
|
score_type_ordermapD = { 'mcc' : 1
|
|
, 'fscore' : 2
|
|
, 'jcc' : 3
|
|
, 'precision' : 4
|
|
, 'recall' : 5
|
|
, 'accuracy' : 6
|
|
, 'roc_auc' : 7
|
|
, 'TN' : 8
|
|
, 'FP' : 9
|
|
, 'FN' : 10
|
|
, 'TP' : 11
|
|
, 'trainingY_neg': 12
|
|
, 'trainingY_pos': 13
|
|
, 'blindY_neg' : 14
|
|
, 'blindY_pos' : 15
|
|
, 'fit_time' : 16
|
|
, 'score_time' : 17
|
|
}
|
|
|
|
scoreCV_mapD = {'test_mcc' : 'MCC'
|
|
, 'test_fscore' : 'F1'
|
|
, 'test_precision' : 'Precision'
|
|
, 'test_recall' : 'Recall'
|
|
, 'test_accuracy' : 'Accuracy'
|
|
, 'test_roc_auc' : 'ROC_AUC'
|
|
, 'test_jcc' : 'JCC'
|
|
}
|
|
|
|
scoreBT_mapD = {'bts_mcc' : 'MCC'
|
|
, 'bts_fscore' : 'F1'
|
|
, 'bts_precision' : 'Precision'
|
|
, 'bts_recall' : 'Recall'
|
|
, 'bts_accuracy' : 'Accuracy'
|
|
, 'bts_roc_auc' : 'ROC_AUC'
|
|
, 'bts_jcc' : 'JCC'
|
|
}
|
|
|
|
#gene_group = 'gene_name'
|
|
#%%############################################################################
|
|
############################
|
|
# MultModelsCl()
|
|
# Run Multiple Classifiers
|
|
############################
|
|
# Multiple Classification - Model Pipeline
|
|
def MultModelsCl(input_df
|
|
, target
|
|
, sel_cv
|
|
, tts_split_type
|
|
, resampling_type
|
|
#, group = None
|
|
|
|
, add_cm = True # adds confusion matrix based on cross_val_predict
|
|
, add_yn = True # adds target var class numbers
|
|
, var_type = ['numerical', 'categorical','mixed']
|
|
, scale_numeric = ['min_max', 'std', 'min_max_neg', 'none']
|
|
|
|
, run_blind_test = True
|
|
, blind_test_df = pd.DataFrame()
|
|
, blind_test_target = pd.Series(dtype = int)
|
|
, return_formatted_output = True
|
|
|
|
, random_state = 42
|
|
, n_jobs = os.cpu_count() # the number of jobs should equal the number of CPU cores
|
|
):
|
|
|
|
'''
|
|
@ param input_df: input features
|
|
@ type: df with input features WITHOUT the target variable
|
|
|
|
@param target: target (or output) feature
|
|
@type: df or np.array or Series
|
|
|
|
@param skv_cv: stratifiedK fold int or object to allow shuffle and random state to pass
|
|
@type: int or StratifiedKfold()
|
|
|
|
@var_type: numerical, categorical and mixed to determine what col_transform to apply (MinMaxScalar and/or one-hot encoder)
|
|
@type: list
|
|
|
|
returns
|
|
Dict containing multiple classification scores for each model and mean of each Stratified Kfold including training
|
|
'''
|
|
|
|
#%% Func globals
|
|
rs = {'random_state': random_state}
|
|
njobs = {'n_jobs': n_jobs}
|
|
|
|
skf_cv = StratifiedKFold(n_splits = 10
|
|
#, shuffle = False, random_state= None)
|
|
, shuffle = True,**rs)
|
|
|
|
rskf_cv = RepeatedStratifiedKFold(n_splits = 10
|
|
, n_repeats = 3
|
|
, **rs)
|
|
logo = LeaveOneGroupOut()
|
|
|
|
# select CV type:
|
|
# if group == None:
|
|
# sel_cv = skf_cv
|
|
# else:
|
|
# sel_cv = logo
|
|
#======================================================
|
|
# Determine categorical and numerical features
|
|
#======================================================
|
|
numerical_ix = input_df.select_dtypes(include=['int64', 'float64']).columns
|
|
numerical_ix
|
|
categorical_ix = input_df.select_dtypes(include=['object', 'bool']).columns
|
|
categorical_ix
|
|
|
|
#======================================================
|
|
# Determine preprocessing steps ~ var_type
|
|
#======================================================
|
|
|
|
# if var_type == 'numerical':
|
|
# t = [('num', MinMaxScaler(), numerical_ix)]
|
|
|
|
# if var_type == 'categorical':
|
|
# t = [('cat', OneHotEncoder(), categorical_ix)]
|
|
|
|
# # if var_type == 'mixed':
|
|
# # t = [('num', MinMaxScaler(), numerical_ix)
|
|
# # , ('cat', OneHotEncoder(), categorical_ix) ]
|
|
|
|
# col_transform = ColumnTransformer(transformers = t
|
|
# , remainder='passthrough')
|
|
|
|
if type(var_type) == list:
|
|
var_type = str(var_type[0])
|
|
else:
|
|
var_type = var_type
|
|
|
|
if var_type in ['numerical','mixed']:
|
|
if scale_numeric == ['none']:
|
|
t = [('cat', OneHotEncoder(), categorical_ix)]
|
|
if scale_numeric != ['none']:
|
|
if scale_numeric == ['min_max']:
|
|
scaler = MinMaxScaler()
|
|
if scale_numeric == ['min_max_neg']:
|
|
scaler = MinMaxScaler(feature_range=(-1, 1))
|
|
if scale_numeric == ['std']:
|
|
scaler = StandardScaler()
|
|
|
|
t = [('num', scaler, numerical_ix)
|
|
, ('cat', OneHotEncoder(), categorical_ix)]
|
|
|
|
|
|
if var_type == 'categorical':
|
|
t = [('cat', OneHotEncoder(), categorical_ix)]
|
|
|
|
|
|
col_transform = ColumnTransformer(transformers = t
|
|
, remainder='passthrough')
|
|
|
|
|
|
#======================================================
|
|
# Specify multiple Classification Models
|
|
#======================================================
|
|
models = [('AdaBoost Classifier' , AdaBoostClassifier(**rs) )
|
|
, ('Bagging Classifier' , BaggingClassifier(**rs, **njobs, bootstrap = True, oob_score = True, verbose = 3, n_estimators = 100) )
|
|
##, ('Bernoulli NB' , BernoulliNB() ) # pks Naive Bayes, CAUTION
|
|
, ('Complement NB' , ComplementNB() )
|
|
, ('Decision Tree' , DecisionTreeClassifier(**rs) )
|
|
, ('Extra Tree' , ExtraTreeClassifier(**rs) )
|
|
, ('Extra Trees' , ExtraTreesClassifier(**rs) )
|
|
, ('Gradient Boosting' , GradientBoostingClassifier(**rs) )
|
|
, ('Gaussian NB' , GaussianNB() )
|
|
, ('Gaussian Process' , GaussianProcessClassifier(**rs) )
|
|
, ('K-Nearest Neighbors' , KNeighborsClassifier() )
|
|
, ('LDA' , LinearDiscriminantAnalysis() )
|
|
, ('Logistic Regression' , LogisticRegression(**rs) )
|
|
, ('Logistic RegressionCV' , LogisticRegressionCV(cv = 3, **rs))
|
|
, ('MLP' , MLPClassifier(max_iter = 500, **rs) )
|
|
, ('Multinomial NB' , MultinomialNB() )
|
|
, ('Passive Aggresive' , PassiveAggressiveClassifier(**rs, **njobs) )
|
|
, ('QDA' , QuadraticDiscriminantAnalysis() )
|
|
, ('Random Forest' , RandomForestClassifier(**rs, n_estimators = 1000, **njobs ) )
|
|
, ('Random Forest2' , RandomForestClassifier(min_samples_leaf = 5
|
|
, n_estimators = 1000
|
|
, bootstrap = True
|
|
, oob_score = True
|
|
, **njobs
|
|
, **rs
|
|
, max_features = 'auto') )
|
|
, ('Ridge Classifier' , RidgeClassifier(**rs) )
|
|
, ('Ridge ClassifierCV' , RidgeClassifierCV(cv = 3) )
|
|
, ('SVC' , SVC(**rs) )
|
|
, ('Stochastic GDescent' , SGDClassifier(**rs, **njobs) )
|
|
, ('XGBoost' , XGBClassifier(**rs, verbosity = 0, use_label_encoder = False, **njobs) )
|
|
#, ('Dummy Classifier' , DummyClassifier(strategy = 'most_frequent') )
|
|
, ('Dummy Classifier' , DummyClassifier(constant = 1) )
|
|
]
|
|
|
|
mm_skf_scoresD = {}
|
|
|
|
print('\n==============================================================\n'
|
|
, '\nRunning several classification models (n):', len(models)
|
|
,'\nList of models:')
|
|
for m in models:
|
|
print(m)
|
|
print('\n================================================================\n')
|
|
|
|
index = 1
|
|
for model_name, model_fn in models:
|
|
print('\nRunning classifier:', index
|
|
, '\nModel_name:' , model_name
|
|
, '\nModel func:' , model_fn)
|
|
index = index+1
|
|
|
|
model_pipeline = Pipeline([
|
|
('prep' , col_transform)
|
|
, ('model' , model_fn)])
|
|
|
|
# model_pipeline = Pipeline([
|
|
# ('prep' , col_transform)
|
|
# , ('pca' , PCA(n_components = 2))
|
|
# , ('model' , model_fn)])
|
|
|
|
|
|
print('\nRunning model pipeline:', model_pipeline)
|
|
cv_modD = cross_validate(model_pipeline
|
|
, input_df
|
|
, target
|
|
, cv = sel_cv
|
|
#, groups = group
|
|
, scoring = scoring_fn
|
|
, return_train_score = True)
|
|
#==============================
|
|
# Extract mean values for CV
|
|
#==============================
|
|
mm_skf_scoresD[model_name] = {}
|
|
|
|
for key, value in cv_modD.items():
|
|
print('\nkey:', key, '\nvalue:', value)
|
|
print('\nmean value:', np.mean(value))
|
|
mm_skf_scoresD[model_name][key] = round(np.mean(value),2)
|
|
|
|
# ADD more info: meta data related to input df
|
|
mm_skf_scoresD[model_name]['resampling'] = resampling_type
|
|
mm_skf_scoresD[model_name]['n_training_size'] = len(input_df)
|
|
mm_skf_scoresD[model_name]['n_trainingY_ratio'] = round(Counter(target)[0]/Counter(target)[1], 2)
|
|
mm_skf_scoresD[model_name]['n_features'] = len(input_df.columns)
|
|
mm_skf_scoresD[model_name]['tts_split'] = tts_split_type
|
|
|
|
#######################################################################
|
|
#======================================================
|
|
# Option: Add confusion matrix from cross_val_predict
|
|
# Understand and USE with caution
|
|
#======================================================
|
|
if add_cm:
|
|
cmD = {}
|
|
|
|
# Calculate cm
|
|
y_pred = cross_val_predict(model_pipeline
|
|
, input_df
|
|
, target
|
|
, cv = sel_cv
|
|
#, groups = group
|
|
, **njobs)
|
|
#_tn, _fp, _fn, _tp = confusion_matrix(y_pred, y).ravel() # internally
|
|
tn, fp, fn, tp = confusion_matrix(y_pred, target).ravel()
|
|
|
|
# Build cm dict
|
|
cmD = {'TN' : tn
|
|
, 'FP': fp
|
|
, 'FN': fn
|
|
, 'TP': tp}
|
|
|
|
# Update cv dict cmD
|
|
mm_skf_scoresD[model_name].update(cmD)
|
|
|
|
#=============================================
|
|
# Option: Add targety numbers for data
|
|
#=============================================
|
|
if add_yn:
|
|
tnD = {}
|
|
|
|
# Build tn numbers dict
|
|
tnD = {'n_trainingY_neg' : Counter(target)[0]
|
|
, 'n_trainingY_pos' : Counter(target)[1] }
|
|
|
|
# Update cv dict with cmD and tnD
|
|
mm_skf_scoresD[model_name].update(tnD)
|
|
|
|
#%%
|
|
#=========================
|
|
# Option: Blind test (bts)
|
|
#=========================
|
|
if run_blind_test:
|
|
btD = {}
|
|
|
|
# Build bts numbers dict
|
|
btD = {'n_blindY_neg' : Counter(blind_test_target)[0]
|
|
, 'n_blindY_pos' : Counter(blind_test_target)[1]
|
|
, 'n_testY_ratio' : round(Counter(blind_test_target)[0]/Counter(blind_test_target)[1], 2)
|
|
, 'n_test_size' : len(blind_test_df) }
|
|
|
|
# Update cmD+tnD dicts with btD
|
|
mm_skf_scoresD[model_name].update(btD)
|
|
|
|
#--------------------------------------------------------
|
|
# Build the final results with all scores for the model
|
|
#--------------------------------------------------------
|
|
#bts_predict = gscv_fs.predict(blind_test_df)
|
|
model_pipeline.fit(input_df, target)
|
|
bts_predict = model_pipeline.predict(blind_test_df)
|
|
|
|
bts_mcc_score = round(matthews_corrcoef(blind_test_target, bts_predict),2)
|
|
print('\nMCC on Blind test:' , bts_mcc_score)
|
|
#print('\nAccuracy on Blind test:', round(accuracy_score(blind_test_target, bts_predict),2))
|
|
print('\nMCC on Training:' , mm_skf_scoresD[model_name]['test_mcc'] )
|
|
|
|
mm_skf_scoresD[model_name]['bts_mcc'] = bts_mcc_score
|
|
mm_skf_scoresD[model_name]['bts_fscore'] = round(f1_score(blind_test_target, bts_predict),2)
|
|
mm_skf_scoresD[model_name]['bts_precision'] = round(precision_score(blind_test_target, bts_predict),2)
|
|
mm_skf_scoresD[model_name]['bts_recall'] = round(recall_score(blind_test_target, bts_predict),2)
|
|
mm_skf_scoresD[model_name]['bts_accuracy'] = round(accuracy_score(blind_test_target, bts_predict),2)
|
|
mm_skf_scoresD[model_name]['bts_roc_auc'] = round(roc_auc_score(blind_test_target, bts_predict),2)
|
|
mm_skf_scoresD[model_name]['bts_jcc'] = round(jaccard_score(blind_test_target, bts_predict),2)
|
|
#mm_skf_scoresD[model_name]['diff_mcc'] = train_test_diff_MCC
|
|
|
|
|
|
#return(mm_skf_scoresD)
|
|
#============================
|
|
# Process the dict to have WF
|
|
#============================
|
|
if return_formatted_output:
|
|
CV_BT_metaDF = ProcessMultModelsCl(mm_skf_scoresD)
|
|
return(CV_BT_metaDF)
|
|
else:
|
|
return(mm_skf_scoresD)
|
|
|
|
#%% Process output function ###################################################
|
|
############################
|
|
# ProcessMultModelsCl()
|
|
############################
|
|
#Processes the dict from above if use_formatted_output = True
|
|
|
|
def ProcessMultModelsCl(inputD = {}, blind_test_data = True):
|
|
|
|
scoresDF = pd.DataFrame(inputD)
|
|
|
|
#------------------------
|
|
# Extracting split_name
|
|
#-----------------------
|
|
tts_split_nameL = []
|
|
for k,v in inputD.items():
|
|
tts_split_nameL = tts_split_nameL + [v['tts_split']]
|
|
|
|
if len(set(tts_split_nameL)) == 1:
|
|
tts_split_name = str(list(set(tts_split_nameL))[0])
|
|
print('\nExtracting tts_split_name:', tts_split_name)
|
|
|
|
#----------------------
|
|
# WF: CV results
|
|
#----------------------
|
|
scoresDFT = scoresDF.T
|
|
|
|
scoresDF_CV = scoresDFT.filter(regex='^test_.*$', axis = 1); scoresDF_CV.columns
|
|
# map colnames for consistency to allow concatenting
|
|
scoresDF_CV.columns = scoresDF_CV.columns.map(scoreCV_mapD); scoresDF_CV.columns
|
|
scoresDF_CV['source_data'] = 'CV'
|
|
|
|
#----------------------
|
|
# WF: Meta data
|
|
#----------------------
|
|
metaDF = scoresDFT.filter(regex='^(?!test_.*$|bts_.*$|train_.*$).*'); metaDF.columns
|
|
|
|
print('\nTotal cols in each df:'
|
|
, '\nCV df:', len(scoresDF_CV.columns)
|
|
, '\nmetaDF:', len(metaDF.columns))
|
|
|
|
#-------------------------------------
|
|
# Combine WF: CV + Metadata
|
|
#-------------------------------------
|
|
|
|
combDF = pd.merge(scoresDF_CV, metaDF, left_index = True, right_index = True)
|
|
print('\nAdding column: Model_name')
|
|
combDF['Model_name'] = combDF.index
|
|
|
|
#----------------------
|
|
# WF: BTS results
|
|
#----------------------
|
|
if blind_test_data:
|
|
|
|
scoresDF_BT = scoresDFT.filter(regex='^bts_.*$', axis = 1); scoresDF_BT.columns
|
|
# map colnames for consistency to allow concatenting
|
|
scoresDF_BT.columns = scoresDF_BT.columns.map(scoreBT_mapD); scoresDF_BT.columns
|
|
scoresDF_BT['source_data'] = 'BT'
|
|
|
|
|
|
print('\nTotal cols in bts df:'
|
|
, '\nBT_df:', len(scoresDF_BT.columns))
|
|
|
|
if len(scoresDF_CV.columns) == len(scoresDF_BT.columns):
|
|
print('\nFirst proceeding to rowbind CV and BT dfs:')
|
|
expected_ncols_out = len(scoresDF_BT.columns) + len(metaDF.columns)
|
|
print('\nFinal output should have:', expected_ncols_out, 'columns' )
|
|
|
|
#-----------------
|
|
# Combine WF
|
|
#-----------------
|
|
dfs_combine_wf = [scoresDF_CV, scoresDF_BT]
|
|
|
|
print('\nCombinig', len(dfs_combine_wf), 'using pd.concat by row ~ rowbind'
|
|
, '\nChecking Dims of df to combine:'
|
|
, '\nDim of CV:', scoresDF_CV.shape
|
|
, '\nDim of BT:', scoresDF_BT.shape)
|
|
#print(scoresDF_CV)
|
|
#print(scoresDF_BT)
|
|
|
|
dfs_nrows_wf = []
|
|
for df in dfs_combine_wf:
|
|
dfs_nrows_wf = dfs_nrows_wf + [len(df)]
|
|
dfs_nrows_wf = max(dfs_nrows_wf)
|
|
|
|
dfs_ncols_wf = []
|
|
for df in dfs_combine_wf:
|
|
dfs_ncols_wf = dfs_ncols_wf + [len(df.columns)]
|
|
dfs_ncols_wf = max(dfs_ncols_wf)
|
|
print(dfs_ncols_wf)
|
|
|
|
expected_nrows_wf = len(dfs_combine_wf) * dfs_nrows_wf
|
|
expected_ncols_wf = dfs_ncols_wf
|
|
|
|
common_cols_wf = list(set.intersection(*(set(df.columns) for df in dfs_combine_wf)))
|
|
print('\nNumber of Common columns:', dfs_ncols_wf
|
|
, '\nThese are:', common_cols_wf)
|
|
|
|
if len(common_cols_wf) == dfs_ncols_wf :
|
|
combined_baseline_wf = pd.concat([df[common_cols_wf] for df in dfs_combine_wf], ignore_index=False)
|
|
print('\nConcatenating dfs with different resampling methods [WF]:'
|
|
, '\nSplit type:', tts_split_name
|
|
, '\nNo. of dfs combining:', len(dfs_combine_wf))
|
|
#print('\n================================================^^^^^^^^^^^^')
|
|
if len(combined_baseline_wf) == expected_nrows_wf and len(combined_baseline_wf.columns) == expected_ncols_wf:
|
|
#print('\n================================================^^^^^^^^^^^^')
|
|
|
|
print('\nPASS:', len(dfs_combine_wf), 'dfs successfully combined'
|
|
, '\nnrows in combined_df_wf:', len(combined_baseline_wf)
|
|
, '\nncols in combined_df_wf:', len(combined_baseline_wf.columns))
|
|
else:
|
|
print('\nFAIL: concatenating failed'
|
|
, '\nExpected nrows:', expected_nrows_wf
|
|
, '\nGot:', len(combined_baseline_wf)
|
|
, '\nExpected ncols:', expected_ncols_wf
|
|
, '\nGot:', len(combined_baseline_wf.columns))
|
|
sys.exit('\nFIRST IF FAILS')
|
|
##
|
|
c1L = list(set(combined_baseline_wf.index))
|
|
c2L = list(metaDF.index)
|
|
|
|
#if set(c1L) == set(c2L):
|
|
if set(c1L) == set(c2L) and all(x in c2L for x in c1L) and all(x in c1L for x in c2L):
|
|
print('\nPASS: proceeding to merge metadata with CV and BT dfs')
|
|
combDF = pd.merge(combined_baseline_wf, metaDF, left_index = True, right_index = True)
|
|
print('\nAdding column: Model_name')
|
|
combDF['Model_name'] = combDF.index
|
|
|
|
else:
|
|
sys.exit('\nFAIL: Could not merge metadata with CV and BT dfs')
|
|
|
|
else:
|
|
# print('\nConcatenting dfs not possible [WF],check numbers ')
|
|
print('\nOnly combining CV and metadata')
|
|
|
|
#-------------------------------------
|
|
# Combine WF+Metadata: Final output
|
|
#-------------------------------------
|
|
|
|
# if len(combDF.columns) == expected_ncols_out:
|
|
# print('\nPASS: Combined df has expected ncols')
|
|
# else:
|
|
# sys.exit('\nFAIL: Length mismatch for combined_df')
|
|
|
|
# print('\nAdding column: Model_name')
|
|
# combDF['Model_name'] = combDF.index
|
|
|
|
print('\n========================================================='
|
|
, '\nSUCCESS: Ran multiple classifiers'
|
|
, '\n=======================================================')
|
|
|
|
#resampling_methods_wf = combined_baseline_wf[['resampling']]
|
|
#resampling_methods_wf = resampling_methods_wf.drop_duplicates()
|
|
#, '\n', resampling_methods_wf)
|
|
|
|
return combDF
|
|
|
|
###############################################################################
|