LSHTM_analysis/scripts/ks_test_dr_PS.R

299 lines
11 KiB
R
Executable file

#!/usr/bin/env Rscript
#########################################################
# TASK: KS test for PS/DUET lineage distributions
#=======================================================================
#=======================================================================
# working dir and loading libraries
getwd()
setwd("~/git/LSHTM_analysis/scripts/")
getwd()
#source("~/git/LSHTM_analysis/scripts/Header_TT.R")
#source("../barplot_colour_function.R")
#require(data.table)
source("plotting/combining_dfs_plotting.R")
# should return the following dfs, directories and variables
# PS combined:
# 1) merged_df2
# 2) merged_df2_comp
# 3) merged_df3
# 4) merged_df3_comp
# LIG combined:
# 5) merged_df2_lig
# 6) merged_df2_comp_lig
# 7) merged_df3_lig
# 8) merged_df3_comp_lig
# 9) my_df_u
# 10) my_df_u_lig
cat(paste0("Directories imported:"
, "\ndatadir:", datadir
, "\nindir:", indir
, "\noutdir:", outdir
, "\nplotdir:", plotdir))
cat(paste0("Variables imported:"
, "\ndrug:", drug
, "\ngene:", gene
, "\ngene_match:", gene_match
, "\nAngstrom symbol:", angstroms_symbol
, "\nNo. of duplicated muts:", dup_muts_nu
, "\nNA count for ORs:", na_count
, "\nNA count in df2:", na_count_df2
, "\nNA count in df3:", na_count_df3))
#=============
# Output
#=============
# ks test by lineage
ks_lineage_drug_muts = paste0(outdir, "/KS_lineage_drug_muts.csv")
###########################
# Data for stats
# you need merged_df2 or merged_df2_comp
# since this is one-many relationship
# i.e the same SNP can belong to multiple lineages
# using the _comp dataset means
# we lose some muts and at this level, we should use
# as much info as available, hence use df with NA
###########################
# REASSIGNMENT
my_df = merged_df2
# delete variables not required
rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp)
rm(merged_df2_lig, merged_df2_comp_lig, merged_df3_lig, merged_df3_comp_lig, my_df_u, my_df_u_lig)
# quick checks
colnames(my_df)
str(my_df)
# Ensure correct data type in columns to plot: need to be factor
#is.factor(my_df$lineage)
#my_df$lineage = as.factor(my_df$lineage)
#is.factor(my_df$lineage)
########################################################################
table(my_df$lineage); str(my_df$lineage)
# subset only lineages1-4
sel_lineages = c("lineage1"
, "lineage2"
, "lineage3"
, "lineage4")
# subset selected lineages
df_lin = subset(my_df, subset = lineage %in% sel_lineages)
#==============
# dr_muts_col
#==============
table(df_lin$mutation_info); str(df_lin$mutation_info)
# subset df with dr muts only
df_lin_dr = subset(df_lin, mutation_info == dr_muts_col)
table(df_lin_dr$mutation_info)
#==============
# other_muts_col
#==============
#df_lin_other = subset(df_lin, mutation_info == other_muts_col)
#table(df_lin_other$mutation_info)
#=======================================================================
# individual: CHECKS
ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == "lineage1"]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == "lineage2"])
#=======================================================================
my_lineages = levels(factor(df_lin_dr$lineage)); my_lineages
#=======================================================================
# Loop
#=====================
# Lineage 1 comparisons
#=====================
my_lin1 = "lineage1"
#my_lineages_comp_l1 = c("lineage2", "lineage3", "lineage4")
my_lineages_comp_l1 = my_lineages[-match(my_lin1, my_lineages)]
ks_df_l1 = data.frame()
for (i in my_lineages_comp_l1){
cat(i)
l1_df = data.frame(group = NA, method = NA, ks_statistic = NA, ks_pvalue = NA)
lineage_comp = paste0(my_lin1, " vs ", i)
ks_method = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin1]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$method
ks_statistic = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin1]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$statistic
ks_pvalue = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin1]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l1_df$group = lineage_comp
l1_df$method = ks_method
l1_df$ks_statistic = ks_statistic[[1]]
l1_df$ks_pvalue = ks_pvalue
print(l1_df)
ks_df_l1 = rbind(ks_df_l1,l1_df)
}
#####################################################################
#=====================
# Lineage 2 comparisons
#=====================
my_lin2 = "lineage2"
#my_lineages_comp_l2 = c("lineage1", lineage3", "lineage4")
my_lineages_comp_l2 = my_lineages[-match(my_lin2, my_lineages)]
ks_df_l2 = data.frame()
for (i in my_lineages_comp_l2){
cat(i)
l2_df = data.frame(group = NA, method = NA, ks_statistic = NA, ks_pvalue = NA)
lineage_comp = paste0(my_lin2, " vs ", i)
ks_method = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin2]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$method
ks_statistic = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin2]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$statistic
ks_pvalue = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin2]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l2_df$group = lineage_comp
l2_df$method = ks_method
l2_df$ks_statistic = ks_statistic[[1]]
l2_df$ks_pvalue = ks_pvalue
print(l2_df)
ks_df_l2 = rbind(ks_df_l2, l2_df)
}
#=====================
# Lineage 3 comparisons
#=====================
my_lin3 = "lineage3"
#my_lineages_comp_l3 = c("lineage1", lineage2", "lineage4")
my_lineages_comp_l3 = my_lineages[-match(my_lin3, my_lineages)]
ks_df_l3 = data.frame()
for (i in my_lineages_comp_l3){
cat(i)
l3_df = data.frame(group = NA, method = NA, ks_statistic = NA, ks_pvalue = NA)
lineage_comp = paste0(my_lin3, " vs ", i)
ks_method = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin3]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$method
ks_statistic = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin3]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$statistic
ks_pvalue = ks.test(df_lin_dr$duet_scaled[df_lin_dr$lineage == my_lin3]
, df_lin_dr$duet_scaled[df_lin_dr$lineage == i])$p.value
# print(c(lineage_comp, ks_method, ks_statistic[[1]], ks_pval))
l3_df$group = lineage_comp
l3_df$method = ks_method
l3_df$ks_statistic = ks_statistic[[1]]
l3_df$ks_pvalue = ks_pvalue
print(l3_df)
ks_df_l3 = rbind(ks_df_l3, l3_df)
}
####################################################################
# combine all three ks_dfs
n_dfs = 3
if ( all.equal(nrow(ks_df_l1), nrow(ks_df_l2), nrow(ks_df_l3)) &&
all.equal(ncol(ks_df_l1), ncol(ks_df_l2), ncol(ks_df_l3)) ){
cat("\nPASS: Calculating expected rows and cols for sanity checks on combined_dfs")
expected_rows = nrow(ks_df_l1) * n_dfs
expected_cols = ncol(ks_df_l1)
ks_df_combined = rbind(ks_df_l1, ks_df_l2, ks_df_l3)
if ( nrow(ks_df_combined) == expected_rows && ncol(ks_df_combined) == expected_cols ){
cat("\nPASS: combined df successfully created"
, "\nnrow combined_df:", nrow(ks_df_combined)
, "\nncol combined_df:", ncol(ks_df_combined))
}
else{
cat("\nFAIL: Dim mismatch"
, "\nExpected rows:", expected_rows
, "\nGot:", nrow(ks_df_combined)
, "\nExpected cols:", expected_cols
, "\nGot:", ncol(ks_df_combined))
}
}else{
cat("\nFAIL: Could not generate expected_rows and/or expected_cols"
, "\nCheck hardcoded value of n_dfs")
}
#=======================================================================
# formatting
#=======================================================================
# add total_n number
ks_df_combined$n_drug_muts = nrow(df_lin_dr)
# adding pvalue_signif
ks_df_combined$pvalue_signif = ks_df_combined$ks_pvalue
str(ks_df_combined$pvalue_signif)
ks_df_combined = dplyr::mutate(ks_df_combined
, pvalue_signif = case_when(pvalue_signif == 0.05 ~ "."
, pvalue_signif <=0.0001 ~ '****'
, pvalue_signif <=0.001 ~ '***'
, pvalue_signif <=0.01 ~ '**'
, pvalue_signif <0.05 ~ '*'
, TRUE ~ 'ns'))
# Remove duplicates
rows_to_remove = c("lineage2 vs lineage1", "lineage3 vs lineage1", "lineage3 vs lineage2")
ks_df_combined_f = ks_df_combined[-match(rows_to_remove, ks_df_combined$group),]
#======================
# P-value adjustments
#=======================
#%%
# add bonferroni adjustment as well
ks_df_combined_f$p_adj_bonferroni = p.adjust(ks_df_combined_f$ks_pvalue, method = "bonferroni")
ks_df_combined_f$signif_bon = ks_df_combined_f$p_adj_bonferroni
ks_df_combined_f = dplyr::mutate(ks_df_combined_f
, signif_bon = case_when(signif_bon == 0.05 ~ "."
, signif_bon <=0.0001 ~ '****'
, signif_bon <=0.001 ~ '***'
, signif_bon <=0.01 ~ '**'
, signif_bon <0.05 ~ '*'
, TRUE ~ 'ns'))
#add fdr as well
ks_df_combined_f$p_adj_fdr = p.adjust(ks_df_combined_f$ks_pvalue, method = "hommel")
ks_df_combined_f$signif_fdr = ks_df_combined_f$p_adj_fdr
ks_df_combined_f = dplyr::mutate(ks_df_combined_f
, signif_fdr = case_when(signif_fdr == 0.05 ~ "."
, signif_fdr <=0.0001 ~ '****'
, signif_fdr <=0.001 ~ '***'
, signif_fdr <=0.01 ~ '**'
, signif_fdr <0.05 ~ '*'
, TRUE ~ 'ns'))
#========================================================================================
#******************
# write output file: KS test
#******************
cat("Output of KS test by lineage for dr_muts:", ks_lineage_drug_muts)
write.csv(ks_df_combined_f, ks_lineage_drug_muts, row.names = FALSE)