305 lines
9.8 KiB
Python
Executable file
305 lines
9.8 KiB
Python
Executable file
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
'''
|
|
Created on Tue Aug 6 12:56:03 2019
|
|
|
|
@author: tanu
|
|
'''
|
|
|
|
# FIXME: include error checking to enure you only
|
|
# concentrate on positions that have structural info?
|
|
|
|
# FIXME: import dirs.py to get the basic dir paths available
|
|
#=======================================================================
|
|
# TASK: extract ALL <gene> matched mutations from GWAS data
|
|
# Input data file has the following format: each row = unique sample id
|
|
# id,country,lineage,sublineage,drtype,drug,dr_muts_col,other_muts_col...
|
|
# 0,sampleID,USA,lineage2,lineage2.2.1,Drug-resistant,0.0,WT,gene_match<wt>POS<mut>; pncA_c.<wt>POS<mut>...
|
|
# where multiple mutations and multiple mutation types are separated by ';'.
|
|
# We are interested in the protein coding region i.e mutation with the<gene>_'p.' format.
|
|
# This script splits the mutations on the ';' and extracts protein coding muts only
|
|
# where each row is a separate mutation
|
|
# sample ids AND mutations are NOT unique, but the COMBINATION (sample id + mutation) = unique
|
|
|
|
# NOTE
|
|
#drtype is renamed to 'resistance' in the 35k dataset
|
|
|
|
# output files: all lower case
|
|
# 0) <gene>_common_ids.csv
|
|
# 1) <gene>_ambiguous_muts.csv
|
|
# 2) <gene>_mcsm_snps.csv
|
|
# 3) <gene>_metadata.csv
|
|
# 4) <gene>_all_muts_msa.csv
|
|
# 5) <gene>_mutational_positons.csv
|
|
|
|
# FIXME
|
|
## Make all cols lowercase
|
|
## change WildPos: wild_pos
|
|
## Add an extra col: wild_chain_pos
|
|
## output df: <gene>_linking_df.csv
|
|
#containing the following cols
|
|
#1. Mutationinformation
|
|
#2. wild_type
|
|
#3. position
|
|
#4. mutant_type
|
|
#5. chain
|
|
#6. wild_pos
|
|
#7. wild_chain_pos
|
|
#=======================================================================
|
|
#%% load libraries
|
|
import os, sys
|
|
import re
|
|
import pandas as pd
|
|
import numpy as np
|
|
import argparse
|
|
#=======================================================================
|
|
#%% homdir and curr dir and local imports
|
|
homedir = os.path.expanduser('~')
|
|
# set working dir
|
|
os.getcwd()
|
|
os.chdir(homedir + '/git/LSHTM_analysis/scripts')
|
|
os.getcwd()
|
|
|
|
# import aa dict
|
|
#from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
|
|
#from tidy_split import tidy_split
|
|
#=======================================================================
|
|
#%% command line args
|
|
arg_parser = argparse.ArgumentParser()
|
|
arg_parser.add_argument('-d', '--drug', help='drug name (case sensitive)', default = None)
|
|
arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = None)
|
|
|
|
args = arg_parser.parse_args()
|
|
#=======================================================================
|
|
#%% variable assignment: input and output paths & filenames
|
|
drug = args.drug
|
|
gene = args.gene
|
|
|
|
gene_match = gene + '_p.'
|
|
print('mut pattern for gene', gene, ':', gene_match)
|
|
|
|
nssnp_match = gene_match +'[A-Za-z]{3}[0-9]+[A-Za-z]{3}'
|
|
print('nsSNP for gene', gene, ':', nssnp_match)
|
|
|
|
nssnp_match2 = re.compile(nssnp_match)
|
|
|
|
wt_regex = gene_match.lower()+'([A-Za-z]{3})'
|
|
print('wt regex:', wt_regex)
|
|
|
|
mut_regex = r'[0-9]+(\w{3})$'
|
|
print('mt regex:', mut_regex)
|
|
|
|
pos_regex = r'([0-9]+)'
|
|
print('position regex:', pos_regex)
|
|
|
|
# building cols to extract
|
|
dr_muts_col = 'dr_mutations_' + drug
|
|
other_muts_col = 'other_mutations_' + drug
|
|
resistance_col = 'drtype'
|
|
|
|
print('Extracting columns based on variables:\n'
|
|
, drug
|
|
, '\n'
|
|
, dr_muts_col
|
|
, '\n'
|
|
, other_muts_col
|
|
, '\n'
|
|
, resistance_col
|
|
, '\n===============================================================')
|
|
#=======================================================================
|
|
#%% input and output dirs and files
|
|
#=======
|
|
# dirs
|
|
#=======
|
|
datadir = homedir + '/' + 'git/Data'
|
|
indir = datadir + '/' + drug + '/' + 'input'
|
|
outdir = datadir + '/' + drug + '/' + 'output'
|
|
|
|
#=======
|
|
# input
|
|
#=======
|
|
#in_filename_master_master = 'original_tanushree_data_v2.csv' #19k
|
|
in_filename_master = 'mtb_gwas_meta_v6.csv' #35k
|
|
infile_master = datadir + '/' + in_filename_master
|
|
print('Input file: ', infile_master
|
|
, '\n============================================================')
|
|
|
|
#=======
|
|
# output
|
|
#=======
|
|
out_filename_epistasis = gene.lower() + '_epistasis_muts.csv'
|
|
outfile_epistasis = outdir + '/' + out_filename_epistasis
|
|
print('Output file: ', outfile_epistasis
|
|
, '\n============================================================')
|
|
|
|
out_filename_epistasis_check = gene.lower() + '_epistasis_muts_check.csv'
|
|
outfile_epistasis_check = outdir + '/' + out_filename_epistasis_check
|
|
print('Output file: ', outfile_epistasis_check
|
|
, '\n============================================================')
|
|
|
|
|
|
#%%end of variable assignment for input and output files
|
|
#=======================================================================
|
|
#%% Read input file
|
|
master_data = pd.read_csv(infile_master, sep = ',')
|
|
|
|
# column names
|
|
#list(master_data.columns)
|
|
|
|
# extract elevant columns to extract from meta data related to the drug
|
|
if in_filename_master == 'original_tanushree_data_v2.csv':
|
|
meta_data = master_data[['id'
|
|
, 'country'
|
|
, 'lineage'
|
|
, 'sublineage'
|
|
, 'drtype'
|
|
, drug
|
|
, dr_muts_col
|
|
, other_muts_col]]
|
|
else:
|
|
core_cols = ['id'
|
|
, 'sample'
|
|
|
|
, 'lineage'
|
|
, 'sublineage'
|
|
|
|
, 'country_code'
|
|
, 'geographic_source'
|
|
|
|
, resistance_col]
|
|
|
|
variable_based_cols = [drug
|
|
, dr_muts_col
|
|
, other_muts_col]
|
|
|
|
cols_to_extract = core_cols + variable_based_cols
|
|
print('Extracting', len(cols_to_extract), 'columns from master data')
|
|
|
|
meta_data = master_data[cols_to_extract]
|
|
del(master_data, variable_based_cols, cols_to_extract)
|
|
|
|
print('Extracted meta data from filename:', in_filename_master
|
|
, '\nDim:', meta_data.shape)
|
|
|
|
# checks and results
|
|
total_samples = meta_data['id'].nunique()
|
|
print('RESULT: Total samples:', total_samples
|
|
, '\n===========================================================')
|
|
|
|
# counts NA per column
|
|
meta_data.isna().sum()
|
|
print('No. of NAs/column:' + '\n', meta_data.isna().sum()
|
|
, '\n===========================================================')
|
|
#%%
|
|
# shorter df
|
|
cols_epi = ['id'
|
|
, 'sample'
|
|
, dr_muts_col
|
|
, other_muts_col]
|
|
|
|
meta_data_epi = meta_data[cols_epi]
|
|
|
|
# extract entries with semi colon
|
|
multi_match = ';'
|
|
meta_multi = meta_data_epi.loc[meta_data_epi[dr_muts_col].str.contains(multi_match , na = False, regex = True, case = False) | meta_data_epi[other_muts_col].str.contains(multi_match , na = False, regex = True, case = False) ]
|
|
meta_gene_multi = meta_multi.loc[meta_multi[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) | meta_multi[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ]
|
|
|
|
#%%
|
|
# count no. of nssnp_match: dr_muts_col
|
|
meta_gene_multi['dr_mult_snp_count'] = meta_gene_multi [dr_muts_col].str.count(nssnp_match, re.I)
|
|
|
|
# count no. of nssnp_match: other_muts_col
|
|
meta_gene_multi['other_mult_snp_count'] = meta_gene_multi [other_muts_col].str.count(nssnp_match, re.I)
|
|
|
|
# check condition
|
|
(meta_gene_multi['dr_mult_snp_count']>1) | (meta_gene_multi['other_mult_snp_count']>1) == True
|
|
meta_gene_epi = meta_gene_multi.loc[(meta_gene_multi['dr_mult_snp_count']>1) | (meta_gene_multi['other_mult_snp_count']>1) == True]
|
|
|
|
|
|
#%% TEST
|
|
# formatting, replace !nssnp_match with nothing
|
|
#foo1 = 'pncA_p.Thr47Pro;pncA_p.Thr61Pro;rpsA_c.XX'
|
|
#foo2 = 'pncA_Chromosome:g.2288693_2289280del; WT; pncA_p.Thr61Ala'
|
|
|
|
|
|
#foo1_s = foo1.split(';')
|
|
#foo1_s
|
|
#nssnp_match2 = re.compile('(pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3})')
|
|
#arse=list(filter(nssnp_match2.match, foo1_s))
|
|
#arse
|
|
|
|
#foo1_s2 = ';'.join(arse)
|
|
#foo1_s2
|
|
|
|
#%%
|
|
#nssnp_match2 = re.compile('(pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3})')
|
|
|
|
# dr_muts_col
|
|
dr_clean_col = dr_muts_col + '_clean'
|
|
|
|
#meta_gene_epi[dr_clean_col] = meta_gene_epi[dr_muts_col].str.split(';')
|
|
meta_gene_epi[dr_clean_col] = ''
|
|
|
|
for i, v in enumerate(meta_gene_epi[dr_muts_col]):
|
|
#print(i, v)
|
|
print('======================================================')
|
|
print(i)
|
|
print(v)
|
|
dr2_s = v.split(';')
|
|
print(dr2_s)
|
|
dr2_sf = list(filter(nssnp_match2.match, dr2_s))
|
|
#dr2_sf = list(filter(nssnp_match.match, dr2_s))
|
|
print(dr2_sf)
|
|
dr2_sf2 = ';'.join(dr2_sf)
|
|
meta_gene_epi[dr_clean_col].iloc[i] = dr2_sf2
|
|
|
|
del(i, v)
|
|
#%%
|
|
# other_muts_col
|
|
other_clean_col = other_muts_col + '_clean'
|
|
|
|
#meta_gene_epi[other_clean_col] = meta_gene_epi[other_muts_col].str.split(';')
|
|
meta_gene_epi[other_clean_col] = ''
|
|
|
|
for i, v in enumerate(meta_gene_epi[other_muts_col]):
|
|
#print(i, v)
|
|
#print('======================================================')
|
|
#print(i)
|
|
#print(v)
|
|
other2_s = v.split(';')
|
|
#print(other2_s)
|
|
other2_sf = list(filter(nssnp_match2.match, other2_s))
|
|
#print(other2_sf)
|
|
other2_sf2 = ';'.join(other2_sf)
|
|
meta_gene_epi[other_clean_col].iloc[i] = other2_sf2
|
|
|
|
|
|
#%%
|
|
# rearange columns
|
|
|
|
meta_gene_epi_f = meta_gene_epi[['id', 'sample'
|
|
, dr_muts_col, dr_clean_col
|
|
, 'dr_mult_snp_count'
|
|
, other_muts_col, other_clean_col
|
|
, 'other_mult_snp_count']]
|
|
#print(meta_gene_epi_f.columns)
|
|
print(meta_gene_epi_f)
|
|
|
|
cols_to_output = ['id', 'sample'
|
|
, dr_clean_col
|
|
# , 'dr_mult_snp_count'
|
|
, other_clean_col
|
|
# , 'other_mult_snp_count'
|
|
]
|
|
|
|
meta_gene_epi_f2 = meta_gene_epi_f[cols_to_output]
|
|
|
|
|
|
#%%
|
|
# formatting, replace !nssnp_match with nothing
|
|
#nssnp_neg_match = '(?!pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3})'
|
|
|
|
#%% end of data extraction. Write files
|
|
meta_gene_epi_f.to_csv(outfile_epistasis_check, index = True)
|
|
meta_gene_epi_f2.to_csv(outfile_epistasis, index = False)
|
|
|