LSHTM_analysis/scripts/data_extraction.py

2100 lines
89 KiB
Python
Executable file

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
'''
@author: tanu
'''
#%% Description
# FIXME: include error checking to enure you only
# concentrate on positions that have structural info?
# FIXME: import dirs.py to get the basic dir paths available
#=======================================================================
# TASK: extract ALL <gene> matched mutations from GWAS data
# Input data file has the following format: each row = unique sample id
# id,country,lineage,sublineage,drtype,drug,dr_muts_col,other_muts_col...
# 0,sampleID,USA,lineage2,lineage2.2.1,Drug-resistant,0.0,WT,gene_match<wt>POS<mut>; pncA_c.<wt>POS<mut>...
# where multiple mutations and multiple mutation types are separated by ';'.
# We are interested in the protein coding region i.e mutation with the<gene>_'p.' format.
# This script splits the mutations on the ';' and extracts protein coding muts only
# where each row is a separate mutation
# sample ids AND mutations are NOT unique, but the COMBINATION (sample id + mutation) = unique
# output files: all lower case
# 1) <gene>_gwas.csv
# 2) <gene>_common_ids.csv
# 3) <gene>_ambiguous_muts.csv
# 4) <gene>_mcsm_formatted_snps.csv
# 5) <gene>_metadata_poscounts.csv
# 6) <gene>_metadata.csv
# 7) <gene>_all_muts_msa.csv
# 8) <gene>_mutational_positons.csv
#------------
# NOTE
#-----------
# drtype is renamed to 'resistance' in the 35k dataset
# all colnames in the ouput files lowercase
#-------------
# requires
#-------------
#reference_dict.py
#tidy_split.py
# bash counting for cross checks: example
#grep -oP 'pncA_p.[A-Za-z]{3}[0-9]+[A-Za-z]{3}' mtb_gwas_meta_v6.csv | sort | uniq -c | wc -l
#=======================================================================
#%% load libraries
import os, sys
import re
import pandas as pd
import numpy as np
import argparse
from statistics import mean, median, mode
from statistics import multimode
# adding values for common keys
import itertools
import collections
#=======================================================================
#%% dir and local imports
homedir = os.path.expanduser('~')
# set working dir
# os.getcwd()
# os.chdir(homedir + '/git/LSHTM_analysis/scripts')
# os.getcwd()
sys.path.append(homedir + '/git/LSHTM_analysis/scripts/')
#=======================================================================
#%% command line args
arg_parser = argparse.ArgumentParser()
arg_parser.add_argument('-d', '--drug', help='drug name (case sensitive)', default = None)
arg_parser.add_argument('-g', '--gene', help='gene name (case sensitive)', default = None)
arg_parser.add_argument('--datadir' , help = 'Data Directory. By default, it assmumes homedir + git/Data')
arg_parser.add_argument('-i', '--input_dir', help = 'Input dir containing pdb files. By default, it assmumes homedir + <drug> + input')
arg_parser.add_argument('-o', '--output_dir', help = 'Output dir for results. By default, it assmes homedir + <drug> + output')
arg_parser.add_argument('-m', '--make_dirs', help = 'Make dir for Data, input and output', action='store_true')
arg_parser.add_argument('--debug', action ='store_true', help = 'Debug Mode')
args = arg_parser.parse_args()
###############################################################################
#%% variable assignment: input and output paths & filenames
drug = args.drug
gene = args.gene
datadir = args.datadir
indir = args.input_dir
outdir = args.output_dir
make_dirs = args.make_dirs
###############################################################################
#%% variable assignment: input and output dirs and files
#=======
# dirs
#=======
if not datadir:
datadir = homedir + '/' + 'git/Data'
if not indir:
indir = datadir + '/' + drug + '/input'
if not outdir:
outdir = datadir + '/' + drug + '/output'
if make_dirs:
print('make_dirs is turned on, creating data dir (unless it already exists):', datadir)
try:
os.makedirs(datadir, exist_ok = True)
print("Directory '%s' created successfully" %datadir)
except OSError as error:
print("Directory '%s' can not be created")
print('make_dirs is turned on, creating indir:', indir)
try:
os.makedirs(indir, exist_ok = True)
print("Directory '%s' created successfully" %indir)
except OSError as error:
print("Directory '%s' can not be created")
print('make_dirs is turned on, creating outdir:', outdir)
try:
os.makedirs(outdir, exist_ok = True)
print("Directory '%s' created successfully" %outdir)
except OSError as error:
print("Directory '%s' can not be created")
# handle missing dirs here
if not os.path.isdir(datadir):
print('ERROR: Data directory does not exist:', datadir
, '\nPlease create and ensure gwas data is present and then rerun\nelse specify cmd option --make_dirs')
sys.exit()
if not os.path.isdir(indir):
print('ERROR: Input directory does not exist:', indir
, '\nPlease either create or specify indir and rerun\nelse specify cmd option --make_dirs')
sys.exit()
if not os.path.isdir(outdir):
print('ERROR: Output directory does not exist:', outdir
, '\nPlease create or specify outdir and rerun\nelse specify cmd option --make_dirs')
sys.exit()
###############################################################################
#%% required local imports
from reference_dict import my_aa_dict # CHECK DIR STRUC THERE!
from tidy_split import tidy_split
###############################################################################
#%% creating required variables: gene and drug dependent, and input filename
gene_match = gene + '_p.'
print('mut pattern for gene', gene, ':', gene_match)
nssnp_match = gene_match +'[A-Za-z]{3}[0-9]+[A-Za-z]{3}'
print('nsSNP for gene', gene, ':', nssnp_match)
nssnp_match_captureG = "(" + nssnp_match + ")"
wt_regex = gene_match.lower()+'([A-Za-z]{3})'
print('wt regex:', wt_regex)
mut_regex = r'[0-9]+(\w{3})$'
print('mt regex:', mut_regex)
pos_regex = r'([0-9]+)'
print('position regex:', pos_regex)
# building cols to extract
dr_muts_col = 'dr_mutations_' + drug
other_muts_col = 'other_mutations_' + drug
resistance_col = 'drtype'
print('Extracting columns based on variables:\n'
, drug
, '\n'
, dr_muts_col
, '\n'
, other_muts_col
, '\n'
, resistance_col
, '\n===============================================================')
#=======
# input
#=======
#in_filename_master_master = 'original_tanushree_data_v2.csv' #19k
in_filename_master = 'mtb_gwas_meta_v6.csv' #35k
infile_master = datadir + '/' + in_filename_master
print('Input file: ', infile_master
, '\n============================================================')
#=======
# output
#=======
# several output files: in respective sections at the time of outputting files
print('Output filename: in the respective sections'
, '\nOutput path: ', outdir
, '\n=============================================================')
#end of variable assignment for input and output files
###############################################################################
#%% Read input file
master_data = pd.read_csv(infile_master, sep = ',')
# column names
#list(master_data.columns)
# extract elevant columns to extract from meta data related to the drug
if in_filename_master == 'original_tanushree_data_v2.csv':
meta_data = master_data[['id'
, 'country'
, 'lineage'
, 'sublineage'
, 'drtype'
, drug
, dr_muts_col
, other_muts_col]]
else:
core_cols = ['id'
, 'sample'
#, 'patient_id'
#, 'strain'
, 'lineage'
, 'sublineage'
, 'country_code'
#, 'geographic_source'
, resistance_col]
variable_based_cols = [drug
, dr_muts_col
, other_muts_col]
cols_to_extract = core_cols + variable_based_cols
print('Extracting', len(cols_to_extract), 'columns from master data')
meta_data = master_data[cols_to_extract]
del(master_data, variable_based_cols, cols_to_extract)
print('Extracted meta data from filename:', in_filename_master
, '\nDim:', meta_data.shape)
# checks and results
total_samples = meta_data['id'].nunique()
print('RESULT: Total samples:', total_samples
, '\n===========================================================')
# counts NA per column
meta_data.isna().sum()
print('No. of NAs/column:' + '\n', meta_data.isna().sum()
, '\n===========================================================\n')
###############################################################################
#%% Quick checks:
meta_data['lineage'].value_counts()
meta_data['lineage'].value_counts().sum()
meta_data['lineage'].nunique()
# replace lineage with 'L' in lineage_labels
#meta_data['lineage_labels'] = meta_data['lineage']
#meta_data['lineage_labels'].equals(meta_data['lineage'])
#all(meta_data['lineage_labels'].value_counts() == meta_data['lineage'].value_counts())
#meta_data['lineage_labels'] = meta_data['lineage_labels'].str.replace('lineage', 'L')
#meta_data['lineage'].value_counts()
#meta_data['lineage_labels'].value_counts()
meta_data['lineage'] = meta_data['lineage'].str.replace('lineage', 'L')
meta_data['lineage'].value_counts()
print("\n================================"
, "\nLineage numbers"
, "\nComplete lineage samples:", meta_data['lineage'].value_counts().sum()
, "\nMissing lineage samples:", meta_data['id'].nunique() - meta_data['lineage'].value_counts().sum()
, "\n================================")
meta_data['id'].nunique()
meta_data['sample'].nunique()
meta_data['id'].equals(meta_data['sample'])
foo = meta_data.copy()
foo['Diff'] = np.where( foo['id'] == foo['sample'] , '1', '0')
foo['Diff'].value_counts()
meta_data['drtype'].value_counts()
meta_data['drtype'].value_counts().sum()
print("\n================================"
, "\ndrtype numbers"
, "\nComplete drtype samples:", meta_data['drtype'].value_counts().sum()
, "\nMissing drtype samples:", meta_data['id'].nunique() - meta_data['drtype'].value_counts().sum()
, "\n================================")
meta_data['drug_name'] = meta_data[drug].map({1:'R'
, 0:'S'})
meta_data['drug_name'].value_counts()
meta_data[drug].value_counts()
meta_data[drug].value_counts().sum()
print("\n================================"
, "\ndrug", drug, "numbers"
, "\nComplete drug samples:", meta_data[drug].value_counts().sum()
, "\nMissing drug samples:", meta_data['id'].nunique() - meta_data[drug].value_counts().sum()
, "\n================================")
print("\n================================"
, "\ndrug", drug, "numbers"
, "\nComplete drug samples:", meta_data['drug_name'].value_counts().sum()
, "\nMissing drug samples:", meta_data['id'].nunique() - meta_data['drug_name'].value_counts().sum()
, "\n================================")
#%% Quick counts: All samples, drug:
print('===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, ':', meta_data[drug].value_counts().sum()
, '\n===========================================================\n'
, 'RESULT: No. of Sus and Res', drug, 'samples:\n', meta_data[drug].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res', drug, 'samples:\n', meta_data[drug].value_counts(normalize = True)*100
, '\n===========================================================')
print('===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, ':', meta_data['drug_name'].value_counts().sum()
, '\n===========================================================\n'
, 'RESULT: No. of Sus and Res', drug, 'samples:\n', meta_data['drug_name'].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res', drug, 'samples:\n', meta_data['drug_name'].value_counts(normalize = True)*100
, '\n===========================================================')
##############################################################################
#%% Extracting nsSNP for gene (meta_gene_all): from dr_muts col and other_muts_col
#meta_data_gene = meta_data.loc[ (meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) | (meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) ]
# so downstream code doesn't change
meta_gene_all = meta_data.loc[ (meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) | (meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False) ) ]
#%% DF: with dr_muts_col, meta_gene_dr
meta_gene_dr = meta_gene_all.loc[meta_gene_all[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
meta_gene_dr1 = meta_data.loc[meta_data[dr_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
if meta_gene_dr.equals(meta_gene_dr1):
print('\nPASS: DF with column:', dr_muts_col, 'extracted successfully'
, '\ngene_snp_match in column:',dr_muts_col, meta_gene_dr.shape)
else:
sys.exit('\nFAIL: DF with column:', dr_muts_col,'could not be extracted'
, '\nshape of df1:', meta_gene_dr.shape
, '\nshape of df2:', meta_gene_dr1.shape
, '\nCheck again!')
##############################################################################
#%% DF: with other_muts_col, other_gene_dr
meta_gene_other = meta_gene_all.loc[meta_gene_all[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
meta_gene_other1 = meta_data.loc[meta_data[other_muts_col].str.contains(nssnp_match, na = False, regex = True, case = False)]
print('gene_snp_match in dr:', len(meta_gene_other))
meta_gene_other.equals(meta_gene_other1)
if meta_gene_other.equals(meta_gene_other1):
print('\nPASS: DF with column:', other_muts_col,'extracted successfully'
, '\ngene_snp_match in column:',other_muts_col, meta_gene_other.shape)
else:
sys.exit('\nFAIL: DF with column:', other_muts_col,'could not be extracted'
, '\nshape of df1:', meta_gene_other.shape
, '\nshape of df2:', meta_gene_other1.shape
, '\nCheck again!')
##############################################################################
#%% Quick counts: <gene>nsSNP samples, drug
meta_gene_all[drug].value_counts()
print('===========================================================\n'
, 'RESULT: Total no. of samples for', drug, 'with nsSNP mutations:', meta_gene_all['id'].nunique()
, '\n===========================================================\n'
, '===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, 'with nsSNP mutations:', meta_gene_all[drug].value_counts().sum()
, '\n===========================================================\n'
, '===========================================================\n'
, 'RESULT: Total no. of samples tested for', drug, 'with nsSNP mutations:', meta_gene_all['drug_name'].value_counts().sum()
, '\n===========================================================\n'
, 'RESULT: No. of Sus and Res', drug, 'samples with nsSNP:\n', meta_gene_all['drug_name'].value_counts()
, '\n===========================================================\n'
, 'RESULT: Percentage of Sus and Res', drug, 'samples with nsSNP mutations:\n', meta_gene_all['drug_name'].value_counts(normalize = True)*100
, '\n===========================================================')
###############################################################################
#%% Create a copy of indices for downstream mergeing
#meta_gene_all['index_orig'] = meta_gene_all.index
#meta_gene_all['index_orig_copy'] = meta_gene_all.index
#all(meta_gene_all.index.values == meta_gene_all['index_orig'].values)
#all(meta_gene_all.index.values == meta_gene_all['index_orig_copy'].values)
##############################################################################
#%% Important sanity checks: Dr muts column for tidy split(), nsSNPs, etc.
# Split based on semi colon dr_muts_col
search = ";"
# count of occurrence of ";" in dr_muts_col: No.of semicolons + 1 is no. of rows created * occurence
count_df_dr = meta_gene_dr[['id', dr_muts_col]].copy()
count_df_dr['dr_semicolon_count'] = meta_gene_dr.loc[:, dr_muts_col].str.count(search, re.I)
dr_sc_C = count_df_dr['dr_semicolon_count'].value_counts().reset_index()
dr_sc_C
dr_sc_C['index_semicolon'] = (dr_sc_C['index'] + 1) *dr_sc_C['dr_semicolon_count']
dr_sc_C
expected_drC = dr_sc_C['index_semicolon'].sum()
expected_drC
# count no. of nsSNPs and extract those nsSNPs
count_df_dr['dr_geneSNP_count'] = meta_gene_dr.loc[:, dr_muts_col].str.count(nssnp_match, re.I)
dr_gene_count1 = count_df_dr['dr_geneSNP_count'].sum()
###############################################################################
# This is to find out how many samples have 1 and more than 1 mutation,so you
# can use it to check if your data extraction process for dr_muts
# and other_muts has worked correctly AND also to check the dim of the
# final formatted data.
# This will have: unique COMBINATION of sample id and <gene_match> mutations
#========
# First: counting <gene_match> mutations in dr_muts_col column
#========
print('Now counting WT &', nssnp_match, 'muts within the column:', dr_muts_col)
# drop na and extract a clean df
clean_df = meta_data.dropna(subset=[dr_muts_col])
# sanity check: count na
na_count = meta_data[dr_muts_col].isna().sum()
if len(clean_df) == (total_samples - na_count):
print('PASS: clean_df extracted: length is', len(clean_df)
, '\nNo.of NAs in', dr_muts_col, '=', na_count, '/', total_samples
, '\n==========================================================')
else:
sys.exit('FAIL: Could not drop NAs')
dr_gene_count = 0
wt = 0
id_dr = []
id2_dr = []
dr_gene_mutsL = []
#nssnp_match_regex = re.compile(nssnp_match)
for i, id in enumerate(clean_df.id):
#print (i, id)
#id_dr.append(id)
#count_gene_dr = clean_df[dr_muts_col].iloc[i].count(gene_match) # can include stop muts
count_gene_dr = len(re.findall(nssnp_match, clean_df[dr_muts_col].iloc[i], re.IGNORECASE))
gene_drL = re.findall(nssnp_match, clean_df[dr_muts_col].iloc[i], re.IGNORECASE)
#print(count_gene_dr)
if count_gene_dr > 0:
id_dr.append(id)
if count_gene_dr > 1:
id2_dr.append(id)
#print(id, count_gene_dr)
dr_gene_count = dr_gene_count + count_gene_dr
dr_gene_mutsL = dr_gene_mutsL + gene_drL
count_wt = clean_df[dr_muts_col].iloc[i].count('WT')
wt = wt + count_wt
print('RESULTS:')
print('Total WT in dr_muts_col:', wt)
print('Total matches of', gene, 'SNP matches in', dr_muts_col, ':', dr_gene_count)
print('Total samples with > 1', gene, 'nsSNPs in dr_muts_col:', len(id2_dr) )
print('Total matches of UNIQUE', gene, 'SNP matches in', dr_muts_col, ':', len(set(dr_gene_mutsL)))
print('=================================================================')
if dr_gene_count == dr_gene_count1:
print('\nPass: dr gene SNP count match')
else:
sys.exit('\nFAIL: dr gene SNP count MISmatch')
del(clean_df, na_count, i, id, wt, id2_dr, count_gene_dr, count_wt)
#%% tidy_split(): dr_muts_col
#=========
# DF1: dr_muts_col
# and remove leading white spaces
#=========
#col_to_split1 = dr_muts_col
print ('Firstly, applying tidy split on dr muts df', meta_gene_dr.shape
, '\ncolumn name to apply tidy_split():' , dr_muts_col
, '\n============================================================')
# apply tidy_split()
dr_WF0 = tidy_split(meta_gene_dr, dr_muts_col, sep = ';')
# remove leading white space else these are counted as distinct mutations as well
dr_WF0[dr_muts_col] = dr_WF0[dr_muts_col].str.strip()
if len(dr_WF0) == expected_drC:
print('\nPass: tidy split on', dr_muts_col, 'worked'
, '\nExpected nrows:', expected_drC
, '\nGot nrows:', len(dr_WF0) )
else:
print('\nFAIL: tidy split on', dr_muts_col, 'did not work'
, '\nExpected nrows:', expected_drC
, '\nGot nrows:', len(dr_WF0) )
# Extract only the samples/rows with nssnp_match
#dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(gene_match)]
dr_gene_WF0 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(nssnp_match, regex = True, case = False)]
#dr_gene_WF0_v2 = dr_WF0.loc[dr_WF0[dr_muts_col].str.contains(nssnp_match_captureG, regex = True, case = False)]
print('Lengths after tidy split and extracting', nssnp_match, 'muts:'
, '\nOld length:' , len(meta_gene_dr)
, '\nLength after split:', len(dr_WF0)
, '\nLength of nssnp df:', len(dr_gene_WF0)
, '\nExpected len:', dr_gene_count
, '\n=============================================================')
# Important: Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df
dr_df = dr_gene_WF0.assign(mutation_info = dr_muts_col)
print('Dim of dr_df:', dr_df.shape
, '\n=============================================================='
, '\nEnd of tidy split() on dr_muts, and added an extra column relecting mut_category'
, '\n===============================================================')
if other_muts_col in dr_df.columns:
print('Dropping:', other_muts_col, 'from WF gene dr_df')
dr_df = dr_df.drop([other_muts_col], axis = 1)
########################################################################
#%% Important sanity checks: other muts column for tidy split(), nsSNPs, etc.
# Split based on semi colon on other_muts_col
# count of occurrence of ";" in other_muts_col: No.of semicolons + 1 is no. of rows created * occurence
count_df_other = meta_gene_other[['id', other_muts_col]].copy()
count_df_other['other_semicolon_count'] = meta_gene_other.loc[:, other_muts_col].str.count(search, re.I)
other_sc_C = count_df_other['other_semicolon_count'].value_counts().reset_index()
other_sc_C
other_sc_C['index_semicolon'] = (other_sc_C['index']+1)*other_sc_C['other_semicolon_count']
other_sc_C
expected_otherC = other_sc_C['index_semicolon'].sum()
expected_otherC
# count no. of nsSNPs and extract those nsSNPs
count_df_other['other_geneSNP_count'] = meta_gene_other.loc[:, other_muts_col].str.count(nssnp_match, re.I)
other_gene_count1 = count_df_other['other_geneSNP_count'].sum()
# This is to find out how many samples have 1 and more than 1 mutation,so you
# can use it to check if your data extraction process for dr_muts
# and other_muts has worked correctly AND also to check the dim of the
# final formatted data.
# This will have: unique COMBINATION of sample id and <gene_match> mutations
#========
# Second: counting <gene_match> mutations in other_muts_col column
#========
print('Now counting WT &', nssnp_match, 'muts within the column:', other_muts_col)
# drop na and extract a clean df
clean_df = meta_data.dropna(subset=[other_muts_col])
# sanity check: count na
na_count = meta_data[other_muts_col].isna().sum()
if len(clean_df) == (total_samples - na_count):
print('PASS: clean_df extracted: length is', len(clean_df)
, '\nNo.of NAs =', na_count, '/', total_samples
, '\n=========================================================')
else:
sys.exit('FAIL: Could not drop NAs')
other_gene_count = 0
wt_other = 0
id_other = []
id2_other = []
other_gene_mutsL = []
for i, id in enumerate(clean_df.id):
#print (i, id)
#id_other.append(id)
#count_gene_other = clean_df[other_muts_col].iloc[i].count(gene_match) # can include stop muts
count_gene_other = len(re.findall(nssnp_match, clean_df[other_muts_col].iloc[i], re.IGNORECASE))
gene_otherL = re.findall(nssnp_match, clean_df[other_muts_col].iloc[i], re.IGNORECASE)
#print(count_gene_other)
if count_gene_other > 0:
id_other.append(id)
if count_gene_other > 1:
id2_other.append(id)
#print(id, count_gene_other)
other_gene_count = other_gene_count + count_gene_other
other_gene_mutsL = other_gene_mutsL + gene_otherL
count_wt = clean_df[other_muts_col].iloc[i].count('WT')
wt_other = wt_other + count_wt
print('RESULTS:')
print('Total WT in other_muts_col:', wt_other)
print('Total matches of', gene, 'SNP matches in', other_muts_col, ':', other_gene_count)
print('Total samples with > 1', gene, 'nsSNPs in other_muts_col:', len(id2_other) )
print('Total matches of UNIQUE', gene, 'SNP matches in', other_muts_col, ':', len(set(other_gene_mutsL)))
print('=================================================================')
if other_gene_count == other_gene_count1:
print('\nPass: other gene SNP count match')
else:
sys.exit('\nFAIL: other gene SNP count MISmatch')
del(clean_df, na_count, i, id, wt_other, id2_other, count_gene_other, count_wt )
#%% tidy_split(): other_muts_col
#=========
# DF2: other_muts_col
# and remove leading white spaces
#=========
#col_to_split2 = other_muts_col
print ('applying second tidy split() separately on other muts df', meta_gene_other.shape
, '\ncolumn name to apply tidy_split():', other_muts_col
, '\n============================================================')
# apply tidy_split()
other_WF1 = tidy_split(meta_gene_other, other_muts_col, sep = ';')
# remove the leading white spaces in the column
other_WF1[other_muts_col] = other_WF1[other_muts_col].str.strip()
# extract only the samples/rows with nssnp_match
#other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(gene_match)]
other_gene_WF1 = other_WF1.loc[other_WF1[other_muts_col].str.contains(nssnp_match, regex = True, case = False)]
print('Lengths after tidy split and extracting', gene_match, 'muts:',
'\nOld length:' , len(meta_gene_other),
'\nLength after split:', len(other_WF1),
'\nLength of nssnp df:', len(other_gene_WF1),
'\nExpected len:', other_gene_count
, '\n=============================================================')
# Important: Assign 'column name' on which split was performed as an extra column
# This is so you can identify if mutations are dr_type or other in the final df
other_df = other_gene_WF1.assign(mutation_info = other_muts_col)
print('dim of other_df:', other_df.shape
, '\n==============================================================='
, '\nEnd of tidy split() on other_muts, and added an extra column relecting mut_category'
, '\n===============================================================')
if dr_muts_col in other_df.columns:
print('Dropping:', dr_muts_col, 'from WF gene other_df')
other_df = other_df.drop([dr_muts_col], axis = 1)
###############################################################################
#%% Finding ambiguous muts
common_snps_dr_other = set(dr_gene_mutsL).intersection(set(other_gene_mutsL))
#%% More sanity checks: expected unique snps and nrows in LF data
expected_unique_snps = len(set(dr_gene_mutsL)) + len(set(other_gene_mutsL)) - len(common_snps_dr_other)
expected_rows = dr_gene_count + other_gene_count
#%% Useful results to note==> counting dr, other and common muts
print('\n==================================================================='
, '\nCount unique nsSNPs for', gene, ':'
, expected_unique_snps
, '\n===================================================================')
Vcounts_dr = pd.Series(dr_gene_mutsL).value_counts()
Vcounts_common_dr = Vcounts_dr.get(list(common_snps_dr_other))
print('\n==================================================================='
, "\nCount of samples for common muts in dr muts\n"
, Vcounts_common_dr
, '\n===================================================================')
Vcounts_other = pd.Series(other_gene_mutsL).value_counts()
Vcounts_common_other = Vcounts_other.get(list(common_snps_dr_other))
print('\n==================================================================='
, '\nCount of samples for common muts in other muts\n'
, Vcounts_common_other
, '\n===================================================================')
print('\n==================================================================='
, '\nPredicting total no. of rows in the curated df:', expected_rows
, '\n===================================================================')
#%% another way: Add value checks for dict so you can know if its correct for LF data count below
dr_snps_vc_dict = pd.Series(dr_gene_mutsL).value_counts().to_dict()
other_snps_vc_dict = pd.Series(other_gene_mutsL).value_counts().to_dict()
for k, v in dr_snps_vc_dict.items():
if k in common_snps_dr_other:
print(k,v)
for k, v in other_snps_vc_dict.items():
if k in common_snps_dr_other:
print(k,v)
# using defaultdict
Cdict = collections.defaultdict(int)
# iterating key, val with chain()
for key, val in itertools.chain(dr_snps_vc_dict.items(), other_snps_vc_dict.items()):
if key in common_snps_dr_other:
Cdict[key] += val
else:
Cdict[key] = val
print(dict(Cdict))
for k, v in Cdict.items():
if k in common_snps_dr_other:
print(k,v)
# convert defaultDict to dict
SnpFDict_orig = dict(Cdict)
def lower_dict(d):
new_dict = dict((k.lower(), v) for k, v in d.items())
return new_dict
SnpFDict = lower_dict(SnpFDict_orig)
###############################################################################
# USE Vcounts to get expected curated df
# resolve dm om muts funda
#%% Concatenating two dfs: gene_LF0
# equivalent of rbind in R
#==========
# Concatentating the two dfs: equivalent of rbind in R
#==========
# Important: Change column names to allow concat:
# dr_muts.. & other_muts : 'mutation'
print('Now concatenating the two dfs by row'
, '\nFirst assigning a common colname: "mutation" to the col containing muts'
, '\nThis is done for both dfs'
, '\n===================================================================')
dr_df.columns
dr_df.rename(columns = {dr_muts_col: 'mutation'}, inplace = True)
dr_df.columns
other_df.columns
other_df.rename(columns = {other_muts_col: 'mutation'}, inplace = True)
other_df.columns
if len(dr_df.columns) == len(other_df.columns):
print('Checking dfs for concatening by rows:'
, '\nDim of dr_df:', dr_df.shape
, '\nDim of other_df:', other_df.shape
, '\nExpected nrows:', len(dr_df) + len(other_df)
, '\n=============================================================')
else:
sys.exit('FAIL: No. of cols mismatch for concatenating')
# checking colnames before concat
print('Checking colnames BEFORE concatenating the two dfs...')
if (set(dr_df.columns) == set(other_df.columns)):
print('PASS: column names match necessary for merging two dfs')
else:
sys.exit('FAIL: Colnames mismatch for concatenating!')
# concatenate (axis = 0): Rbind, adn keeo original index
print('Now appending the two dfs: Rbind')
gene_LF_comb = pd.concat([dr_df, other_df]
#, ignore_index = True
, axis = 0)
if gene_LF_comb.index.nunique() == len(meta_gene_all.index):
print('\nPASS:length of index in LF data:', len(gene_LF_comb.index)
, '\nLength of unique index in LF data:', gene_LF_comb.index.nunique()
)
else:
sys.exit('\nFAIL: expected length for combined LF data mismatch:'
, '\nExpected length:', len(meta_gene_all.index)
, '\nGot:', gene_LF_comb.index.nunique() )
print('Finding stop mutations in concatenated df')
stop_muts = gene_LF_comb['mutation'].str.contains('\*').sum()
if stop_muts == 0:
print('PASS: No stop mutations detected')
else:
print('stop mutations detected'
, '\nNo. of stop muts:', stop_muts, '\n'
, gene_LF_comb.groupby(['mutation_info'])['mutation'].apply(lambda x: x[x.str.contains('\*')].count())
, '\nNow removing them')
gene_LF0_nssnp = gene_LF_comb[~gene_LF_comb['mutation'].str.contains('\*')]
print('snps only: by subtracting stop muts:', len(gene_LF0_nssnp))
gene_LF0 = gene_LF_comb[gene_LF_comb['mutation'].str.contains(nssnp_match, case = False)]
print('snps only by direct regex:', len(gene_LF0))
if gene_LF0_nssnp.equals(gene_LF0):
print('PASS: regex for extracting nssnp worked correctly & stop mutations successfully removed'
, '\nUsing the regex extracted df')
else:
sys.exit('FAIL: posssibly regex or no of stop mutations'
, 'Regex being used:', nssnp_match)
#sys.exit()
# checking colnames and length after concat
print('Checking colnames AFTER concatenating the two dfs...')
if (set(dr_df.columns) == set(gene_LF0.columns)):
print('PASS: column names match'
, '\n=============================================================')
else:
sys.exit('FAIL: Colnames mismatch AFTER concatenating')
print('Checking concatenated df')
if len(gene_LF0) == (len(dr_df) + len(other_df))- stop_muts:
print('PASS:length of df after concat match'
, '\n===============================================================')
else:
sys.exit('FAIL: length mismatch')
#%% NEW check2:id, sample, etc.
gene_LF0['id'].count()
gene_LF0['id'].nunique()
gene_LF0['sample'].nunique()
gene_LF0['mutation_info'].value_counts()
gene_LF0[drug].isna().sum()
#%% Concatenating two dfs sanity checks: gene_LF1
#=========================================================
# This is hopefully clean data, but just double check
# Filter LF data so that you only have
# mutations corresponding to nssnp_match (case insensitive)
# this will be your list you run OR calcs
#=========================================================
print('Length of gene_LF0:', len(gene_LF0)
, '\nThis should be what we need. But just double checking and extracting nsSNP for', gene
, '\nfrom LF0 (concatenated data) using case insensitive regex match:', nssnp_match)
#gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(nssnp_match, regex = True, case = False)]
gene_LF1 = gene_LF0[gene_LF0['mutation'].str.contains(nssnp_match, regex = True, case = False)].copy()
if len(gene_LF0) == len(gene_LF1):
print('PASS: length of gene_LF0 and gene_LF1 match',
'\nConfirming extraction and concatenating worked correctly'
, '\n==========================================================')
else:
print('FAIL: BUT NOT FATAL!'
, '\ngene_LF0 and gene_LF1 lengths differ'
, '\nsuggesting error in extraction process'
, ' use gene_LF1 for downstreama analysis'
, '\n=========================================================')
print('Length of dfs pre and post processing...'
, '\ngene WF data (unique samples in each row):',len(meta_gene_all)
, '\ngene LF data (unique mutation in each row):', len(gene_LF1)
, '\n=============================================================')
# sanity check for extraction
# This ought to pass if nsnsp_match happens right at the beginning of creating 'expected_rows'
print('Verifying whether extraction process worked correctly...')
if len(gene_LF1) == expected_rows:
print('PASS: extraction process performed correctly'
, '\nExpected length:', expected_rows
, '\nGot:', len(gene_LF1)
, '\nRESULT: Total no. of mutant sequences for logo plot:', len(gene_LF1)
, '\n=========================================================')
else:
print('FAIL: extraction process has bugs'
, '\nExpected length:', expected_rows
, '\nGot:', len(gene_LF1)
, '\nDebug please'
, '\n=========================================================')
# more sanity checks
print('Performing some more sanity checks...')
# From LF1: useful for OR counts
# no. of unique muts
distinct_muts = gene_LF1.mutation.value_counts()
print('Distinct genomic mutations:', len(distinct_muts))
# no. of samples contributing the unique muts
gene_LF1.id.nunique()
print('No.of samples contributing to distinct genomic muts:', gene_LF1.id.nunique())
# no. of dr and other muts
mut_grouped = gene_LF1.groupby('mutation_info').mutation.nunique()
print('No.of unique dr and other muts:\n', gene_LF1.groupby('mutation_info').mutation.nunique())
# sanity check
if len(distinct_muts) == mut_grouped.sum() :
print('PASS:length of LF1 is as expected'
, '\n===============================================================')
else:
print('FAIL: Mistmatch in count of muts'
, '\nExpected count:', len(distinct_muts)
, '\nActual count:', mut_grouped.sum()
, '\nMuts should be distinct within dr* and other* type'
, '\nInspecting...possibly ambiguous muts'
, '\nNo. of possible ambiguous muts:', mut_grouped.sum() - len(distinct_muts)
, '\n=========================================================')
muts_split = list(gene_LF1.groupby('mutation_info'))
dr_muts = muts_split[0][1].mutation
other_muts = muts_split[1][1].mutation
print('splitting muts by mut_info:', muts_split)
print('no.of dr_muts samples:', len(dr_muts))
print('no. of other_muts samples', len(other_muts))
#%% Ambiguous muts: the same mutation cannot be classed as a drug AND 'others'
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('WARNING: Ambiguous muts detected in dr_ and other_ mutation category'
, '\n===============================================================')
else:
print('PASS: NO ambiguous muts detected'
, '\nMuts are unique to dr_ and other_ mutation class'
, '\n=========================================================')
# inspect dr_muts and other muts: Fixed in case no ambiguous muts detected!
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('Finding ambiguous muts...'
, '\n========================================================='
, '\nTotal no. of samples in dr_muts present in other_muts:', dr_muts.isin(other_muts).sum()
, '\nThese are:', dr_muts[dr_muts.isin(other_muts)]
, '\n========================================================='
, '\nTotal no. of samples in other_muts present in dr_muts:', other_muts.isin(dr_muts).sum()
, '\nThese are:\n', other_muts[other_muts.isin(dr_muts)]
, '\n=========================================================')
print('Counting no. of ambiguous muts...'
, '\nNo. of ambiguous muts in dr:'
, len(dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist())
, '\nNo. of ambiguous muts in other:'
, len(other_muts[other_muts.isin(dr_muts)].value_counts().keys().tolist())
, '\n=========================================================')
if dr_muts[dr_muts.isin(other_muts)].nunique() == other_muts[other_muts.isin(dr_muts)].nunique():
common_muts = dr_muts[dr_muts.isin(other_muts)].value_counts().keys().tolist()
print('Distinct no. of ambigiuous muts detected:'+ str(len(common_muts))
, '\nlist of ambiguous mutations (see below):', *common_muts, sep = '\n')
print('\n===========================================================')
else:
#sys.exit('Error: ambiguous muts present, but extraction failed. Debug!')
print('Ambiguous muts are NOT present')
#%% DOES NOT depend on common_muts
gene_LF1_orig = gene_LF1.copy()
gene_LF1_orig.equals(gene_LF1)
# copy the old columns for checking
gene_LF1['mutation_info_orig'] = gene_LF1['mutation_info']
gene_LF1['mutation_info_v1'] = gene_LF1['mutation_info']
gene_LF1['mutation_info'].value_counts()
#%% Ambiguous muts: revised annotation for mutation_info
if 'common_muts' in globals():
ambiguous_muts_df = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
ambiguous_muts_value_counts = ambiguous_muts_df.groupby('mutation')['mutation_info'].value_counts()
ambiguous_muts_value_counts
# gene_LF1_orig = gene_LF1.copy()
# gene_LF1_orig.equals(gene_LF1)
# # copy the old columns for checking
# gene_LF1['mutation_info_orig'] = gene_LF1['mutation_info']
# gene_LF1['mutation_info_v1'] = gene_LF1['mutation_info']
# gene_LF1['mutation_info'].value_counts()
#%% Inspect ambiguous muts
#=====================================
# Now create a new df that will have:
# ambiguous muts
# mutation_info
# revised mutation_info
# The revised label is based on value_counts
# for mutaiton_info. The corresponding mutation_info:
# label is chosen that corresponds to the max of value counts
#=====================================
ambig_muts_rev_df = pd.DataFrame()
changes_val = []
changes_dict = {}
common_muts
gene_LF1['mutation'].head()
#common_muts_lower = list((map(lambda x: x.lower(), common_muts)))
#common_muts_lower
for i in common_muts:
#for i in common_muts_lower:
#print(i)
temp_df = gene_LF1[gene_LF1['mutation'] == i][['mutation', 'mutation_info_orig']]
temp_df
# DANGER: ASSUMES TWO STATES ONLY and that value_counts sorts by descending
max_info_table = gene_LF1[gene_LF1['mutation'] == i][['mutation', 'mutation_info_orig']].value_counts()
max_info_table
revised_label = max_info_table[[0]].index[0][1] # max value_count
old_label = max_info_table[[1]].index[0][1] # min value_count
print('\nAmbiguous mutation labels...'
, '\nSetting mutation_info for', i, 'to', revised_label)
temp_df['mutation_info_REV'] = np.where( (temp_df['mutation_info_orig'] == old_label)
, revised_label
, temp_df['mutation_info_orig'])
ambig_muts_rev_df = pd.concat([ambig_muts_rev_df,temp_df])
f = max_info_table[[1]]
old_label_count = f[[0]][0]
changes_val.append(old_label_count)
cc_dict = f.to_dict()
changes_dict.update(cc_dict)
ambig_muts_rev_df['mutation_info_REV'].value_counts()
ambig_muts_rev_df['mutation_info_orig'].value_counts()
changes_val
changes_total = sum(changes_val)
changes_dict
n_changes = sum(changes_dict.values())
#%% OUTFILE 1, write file: ambiguous muts and ambiguous mut counts
#==================
# ambiguous muts
#==================
#dr_muts.XXX_csvXXXX('dr_muts.csv', header = True)
#other_muts.XXXX_csvXXX('other_muts.csv', header = True)
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
out_filename_ambig_muts = gene.lower() + '_ambiguous_muts.csv'
outfile_ambig_muts = outdir + '/' + out_filename_ambig_muts
print('\n----------------------------------'
, '\nWriting file: ambiguous muts'
, '\n----------------------------------'
, '\nFilename:', outfile_ambig_muts)
inspect = gene_LF1[gene_LF1['mutation'].isin(common_muts)]
inspect.to_csv(outfile_ambig_muts, index = True)
print('Finished writing:', out_filename_ambig_muts
, '\nNo. of rows:', len(inspect)
, '\nNo. of cols:', len(inspect.columns)
, '\nNo. of rows = no. of samples with the ambiguous muts present:'
, dr_muts.isin(other_muts).sum() + other_muts.isin(dr_muts).sum()
, '\n=============================================================')
del(out_filename_ambig_muts)
#%% OUTFILE 2, write file: ambiguous mut counts
#======================
# ambiguous mut counts
#======================
out_filename_ambig_mut_counts = gene.lower() + '_ambiguous_mut_counts.csv'
outfile_ambig_mut_counts = outdir + '/' + out_filename_ambig_mut_counts
print('\n----------------------------------'
, '\nWriting file: ambiguous mut counts'
, '\n----------------------------------'
, '\nFilename:', outfile_ambig_mut_counts)
ambiguous_muts_value_counts.to_csv(outfile_ambig_mut_counts, index = True)
#%% FIXME: Add sanity check to make sure you can add value_count checks
#%% Resolving ambiguous muts: Merging ambiguous muts with the revised annotations
#=================
# Merge ambig muts
# with gene_LF1
#===================
ambig_muts_rev_df.index
gene_LF1.index
all(ambig_muts_rev_df.index.isin(gene_LF1.index))
any(gene_LF1.index.isin(ambig_muts_rev_df.index))
# if(gene_LF1.index.unique().isin(ambig_muts_rev_df.index).sum() == len(ambig_muts_rev_df)):
if(gene_LF1.index.unique().isin(ambig_muts_rev_df.index).sum() == ambig_muts_rev_df.index.nunique()):
print('\nPASS: ambiguous mut indices present in gene_LF1. Prepare to merge...')
else:
sys.exit('\nFAIL:ambiguous mut indices MISmatch. Check section Resolving ambiguous muts')
##########################################################################
for index, row in ambig_muts_rev_df.iterrows():
curr_mut = row['mutation']
curr_rev = row['mutation_info_REV']
print('\n=====\nAmbiguous Mutation: index:', index, '\nmutation:', curr_mut, '\nNew:', curr_rev, '\n=====\n' )
print('\n-----\nReplacing original: index:', index, '\nmutation: '
, gene_LF1.loc[index,'mutation']
, '\nmutation_info to replace:'
, gene_LF1.loc[index,'mutation_info']
, '\nwith:', curr_rev, '\n-----')
replacement_row=(gene_LF1.index==index) & (gene_LF1['mutation'] == curr_mut)
gene_LF1.loc[replacement_row, 'mutation_info'] = curr_rev
###########################################################################
gene_LF1['mutation_info_orig'].value_counts()
gene_LF1['mutation_info_v1'].value_counts()
gene_LF1['mutation_info'].value_counts()
# Sanity check1: if there are still any ambiguous muts
#muts_split_rev = list(gene_LF1.groupby('mutation_info_v1'))
muts_split_rev = list(gene_LF1.groupby('mutation_info'))
dr_muts_rev = muts_split_rev[0][1].mutation
other_muts_rev = muts_split_rev[1][1].mutation
print('splitting muts by mut_info:', muts_split_rev)
print('no.of dr_muts samples:', len(dr_muts_rev))
print('no. of other_muts samples', len(other_muts_rev))
if not dr_muts_rev.isin(other_muts_rev).sum() & other_muts_rev.isin(dr_muts_rev).sum() > 0:
print('\nAmbiguous muts corrected. Proceeding with downstream analysis')
else:
print('\nAmbiguous muts NOT corrected. Quitting!')
sys.exit()
else:
print('Mutations ARE NOT ambiguous, proceeding to downstream analyses')
#gene_LF1['mutation_info_v1'].value_counts()
gene_LF1['mutation_info'].value_counts()
# reassign
#%% PHEW! Good to go for downstream stuff
#%% Add column: Mutationinformation ==> gene_LF1
# splitting mutation column to get mCSM style muts
#=====================================================
# Formatting df: read aa dict and pull relevant info
#=====================================================
print('Now some more formatting:'
, '\nRead aa dict and pull relevant info'
, '\nFormat mutations:'
, '\nsplit mutation into mCSM style muts: '
, '\nFormatting mutation in mCSM style format: {WT}<POS>{MUT}'
, '\nAssign aa properties: adding 2 cols at a time for each prop'
, '\n===================================================================')
# BEWARE hardcoding : only works as we are adding aa prop once for wt and once for mut
# in each lookup cycle
ncol_mutf_add = 3 # mut split into 3 cols
ncol_aa_add = 2 # 2 aa prop add (wt & mut) in each mapping
#======================================================================
# Split 'mutation' column into three: wild_type, position and
# mutant_type separately. Then map three letter code to one using
# reference_dict imported at the beginning.
# After importing, convert to mutation to lowercase for
# compatibility with dict
#=======================================================================
gene_LF1['mutation'] = gene_LF1.loc[:, 'mutation'].str.lower()
print('wt regex being used:', wt_regex
, '\nmut regex being used:', mut_regex
, '\nposition regex being used:', pos_regex)
mylen0 = len(gene_LF1.columns)
#=========================================================
# Iterate through the dict, create a lookup dict i.e
# lookup_dict = {three_letter_code: one_letter_code}.
# lookup dict should be the key and the value (you want to create a column for)
# Then use this to perform the mapping separetly for wild type and mutant cols.
# The three letter code is extracted using a string match match from the
# dataframe and then converted
# to 'pandas series'since map only works in pandas series
#===========================================================
print('Adding', ncol_mutf_add, 'more cols:\n')
# initialise a sub dict that is lookup dict for three letter code to 1-letter code
# adding three more cols
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['one_letter_code']
#wt = gene_LF1['mutation'].str.extract(gene_regex).squeeze()converts to a series that map works on
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wild_type'] = wt.map(lookup_dict)
#mut = gene_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mutant_type'] = mut.map(lookup_dict)
#-------------------
# extract position
# info from mutation
# column separetly using string match
#-------------------
#gene_LF1['position'] = gene_LF1['mutation'].str.extract(r'(\d+)')
gene_LF1['position'] = gene_LF1['mutation'].str.extract(pos_regex)
#mylen1 = len(gene_LF1.columns)
mylen0_v2 = len(gene_LF1.columns)
# sanity checks
print('checking if 3-letter wt&mut residue extraction worked correctly')
if wt.isna().sum() & mut.isna().sum() == 0:
print('PASS: 3-letter wt & mut residue extraction worked correctly:'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
else:
print('FAIL: 3-letter wt&mut residue extraction failed'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
#if mylen1 == mylen0 + ncol_mutf_add:
if mylen0_v2 == mylen0 + ncol_mutf_add:
print('PASS: successfully added', ncol_mutf_add, 'cols'
, '\nold length:', mylen0
, '\nnew len:', mylen0_v2)
else:
print('FAIL: failed to add cols:'
, '\nold length:', mylen0
, '\nnew len:', mylen0_v2)
# clear variables
del(k, v, wt, mut, lookup_dict)
##########################################################################
# combine the wild_type+poistion+mutant_type columns to generate
# mutationinformation (matches mCSM output field)
# Remember to use .map(str) for int col types to allow string concatenation
###########################################################################
gene_LF1['mutationinformation'] = gene_LF1['wild_type'] + gene_LF1.position.map(str) + gene_LF1['mutant_type']
print('Created column: mutationinformation'
, '\n=====================================================================\n'
, gene_LF1.mutationinformation.head(10))
# order by position for convenience
gene_LF1.dtypes
# converting position to numeric
gene_LF1['position'] = pd.to_numeric(gene_LF1['position'])
# sort by position inplace
foo = gene_LF1['position'].value_counts()
foo = foo.sort_index()
gene_LF1.sort_values(by = ['position'], inplace = True)
bar = gene_LF1['position'].value_counts()
bar = bar.sort_index()
if all(foo == bar):
print('PASS: df ordered by position')
print(gene_LF1['position'].head())
else:
sys.exit('FAIL: df could not be ordered. Check source')
print('\nDim of gene_LF1:', len(gene_LF1.columns), 'more cols:\n')
#%% Create a copy of mutationinformation column for downstream mergeing
gene_LF1['Mut'] = gene_LF1['mutationinformation']
gene_LF1['Mut_copy'] = gene_LF1['mutationinformation']
#%% Create a copy of indices for downstream mergeing
gene_LF1['index_orig'] = gene_LF1.index
gene_LF1['index_orig_copy'] = gene_LF1.index
all(gene_LF1.index.values == gene_LF1['index_orig'].values)
all(gene_LF1.index.values == gene_LF1['index_orig_copy'].values)
#%% Quick sanity check for position freq count
# count the freq of 'other muts' samples
test_df = gene_LF1.copy()
test_df = test_df[['id','index_orig', 'mutationinformation', 'mutation', 'position']]
# add freq column
#test_df['sample_freq'] = test_df.groupby('id')['id'].transform('count')
#print('Revised dim of other_muts_df:',test_df.shape)
test_df['scount'] = test_df['mutation'].map(SnpFDict)
test_df = test_df.sort_values(['position', 'mutationinformation'])
#%% Map mutation frequency count as a column
gene_LF1['snp_frequency'] = gene_LF1['mutation'].map(SnpFDict)
#%% Map position frequency count as a column
z = gene_LF1['position'].value_counts()
z1 = z.to_dict()
gene_LF1['pos_count'] = gene_LF1['position'].map(z1)
#test_df2 = test_df.loc[test_df['position'] == 10]
###############################################################################
cols_added = ['Mut', 'Mut_copy', 'index', 'index_copy', 'pos_count', 'snp_frequency']
print('\nAdded', len(cols_added), 'more cols:\n'
, '\nDim of new gene_LF1:', len(gene_LF1.columns))
mylen1 = len(gene_LF1.columns) # updated my_len1
###############################################################################
#%% Add column: aa property_water ==> gene_LF1
#=========
# iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_prop_water}
# Do this for both wild_type and mutant as above.
#=========
print('Adding', ncol_aa_add, 'more cols:\n')
# initialise a sub dict that is lookup dict for three letter code to aa prop
# adding two more cols
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_prop_water']
#print(lookup_dict)
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wt_prop_water'] = wt.map(lookup_dict)
#mut = gene_LF1['mutation'].str.extract('\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mut_prop_water'] = mut.map(lookup_dict)
mylen2 = len(gene_LF1.columns)
# sanity checks
print('checking if 3-letter wt&mut residue extraction worked correctly')
if wt.isna().sum() & mut.isna().sum() == 0:
print('PASS: 3-letter wt&mut residue extraction worked correctly:'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
else:
print('FAIL: 3-letter wt&mut residue extraction failed'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
if mylen2 == mylen1 + ncol_aa_add:
print('PASS: successfully added', ncol_aa_add, 'cols'
, '\nold length:', mylen1
, '\nnew len:', mylen2)
else:
print('FAIL: failed to add cols:'
, '\nold length:', mylen1
, '\nnew len:', mylen2)
# clear variables
del(k, v, wt, mut, lookup_dict)
#%% Add column: aa_prop_polarity ==> gene_LF1
#========
# iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_prop_polarity}
# Do this for both wild_type and mutant as above.
#=========
print('Adding', ncol_aa_add, 'more cols:\n')
# initialise a sub dict that is lookup dict for three letter code to aa prop
# adding two more cols
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_prop_polarity']
#print(lookup_dict)
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wt_prop_polarity'] = wt.map(lookup_dict)
#mut = gene_LF1['mutation'].str.extract(r'\d+(\w{3})$').squeeze()
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mut_prop_polarity'] = mut.map(lookup_dict)
mylen3 = len(gene_LF1.columns)
# sanity checks
print('checking if 3-letter wt&mut residue extraction worked correctly')
if wt.isna().sum() & mut.isna().sum() == 0:
print('PASS: 3-letter wt&mut residue extraction worked correctly:'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
else:
print('FAIL: 3-letter wt&mut residue extraction failed'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
if mylen3 == mylen2 + ncol_aa_add:
print('PASS: successfully added', ncol_aa_add, 'cols'
, '\nold length:', mylen1
, '\nnew len:', mylen2)
else:
print('FAIL: failed to add cols:'
, '\nold length:', mylen1
, '\nnew len:', mylen2)
# clear variables
del(k, v, wt, mut, lookup_dict)
#%% Add column: aa_calcprop ==> gene_LF1
#========
# iterate through the dict, create a lookup dict that i.e
# lookup_dict = {three_letter_code: aa_calcprop}
# Do this for both wild_type and mutant as above.
#=========
print('Adding', ncol_aa_add, 'more cols:\n')
lookup_dict = dict()
for k, v in my_aa_dict.items():
lookup_dict[k] = v['aa_calcprop']
#print(lookup_dict)
wt = gene_LF1['mutation'].str.extract(wt_regex).squeeze()
gene_LF1['wt_calcprop'] = wt.map(lookup_dict)
mut = gene_LF1['mutation'].str.extract(mut_regex).squeeze()
gene_LF1['mut_calcprop'] = mut.map(lookup_dict)
mylen4 = len(gene_LF1.columns)
# sanity checks
print('checking if 3-letter wt&mut residue extraction worked correctly')
if wt.isna().sum() & mut.isna().sum() == 0:
print('PASS: 3-letter wt&mut residue extraction worked correctly:'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
else:
print('FAIL: 3-letter wt&mut residue extraction failed'
, '\nNo NAs detected:'
, '\nwild-type\n', wt
, '\nmutant-type\n', mut
, '\ndim of df:', gene_LF1.shape)
if mylen4 == mylen3 + ncol_aa_add:
print('PASS: successfully added', ncol_aa_add, 'cols'
, '\nold length:', mylen3
, '\nnew len:', mylen4)
else:
print('FAIL: failed to add cols:'
, '\nold length:', mylen3
, '\nnew len:', mylen4)
# clear variables
del(k, v, wt, mut, lookup_dict)
#%% NEW mappings: gene_LF2
# gene_LF2: copy gene_LF1
gene_LF2 = gene_LF1.copy()
gene_LF2.index
#%% Add total unique id count
gene_LF2['id'].nunique()
gene_LF2['Mut'].nunique()
total_id_ucount = gene_LF2['id'].nunique()
total_id_ucount
total_id_ucount2 = gene_LF2['sample'].nunique()
total_id_ucount2
if total_id_ucount == total_id_ucount2:
print('\nPASS: sample and id unique counts match')
else:
print('\nFAIL: sample and id unique counts DO NOT match!'
, '\nGWAS worry!?')
# Add all sample ids in a list for sanity checks
#gene_LF2['id_list'] = gene_LF2['mutationinformation'].map(gene_LF2.groupby('mutationinformation')['id'].apply(list))
#==========================================
# Add column: total unique id/sample count
#==========================================
gene_LF2['total_id_ucount'] = total_id_ucount
#==========================================
# DELETE as already mapped: Add column: mutation count in all samples
#==========================================
# gene_LF2['mut_id_ucount'] = gene_LF2['mutationinformation'].map(gene_LF2.groupby('mutationinformation')['id'].nunique())
# gene_LF2['mut_id_ucount']
gene_LF2['snp_frequency'] = gene_LF2['mutationinformation'].map(gene_LF2.groupby('mutationinformation')['id'].nunique())
# gene_LF1['snp_frequency'].equals(gene_LF2['mut_id_ucount'])
#%% AF for gene
#=================
# Add column: AF
#=================
gene_LF2['maf'] = gene_LF2['snp_frequency']/gene_LF2['total_id_ucount']
gene_LF2['maf'].head()
###############################################################################
#%% Further mappings: gene_LF3, with mutationinformation as INDEX
gene_LF3 = gene_LF2.copy()
# Assign index: mutationinformation for mapping
gene_LF3 = gene_LF3.set_index(['mutationinformation'])
gene_LF3.index
gene_LF3['id'].nunique()
gene_LF3['Mut'].nunique()
gene_LF3.index.nunique()
all(gene_LF3['Mut'] == gene_LF3.index)
#%% Mapping 1: column '<drtype>'
#============================
# column name: <drtype>
#============================
gene_LF3['drtype'].value_counts()
# mapping 2.1: numeric
drtype_map = {'XDR': 5
, 'Pre-XDR': 4
, 'MDR': 3
, 'Pre-MDR': 2
, 'Other': 1
, 'Sensitive': 0}
gene_LF3['drtype_numeric'] = gene_LF3['drtype'].map(drtype_map)
gene_LF3['drtype'].value_counts()
gene_LF3['drtype_numeric'].value_counts()
# Multimode: drtype
#=============================
# Recalculation: Revised drtype
# max(multimode)
#=============================
#--------------------------------
# drtype: ALL values:
# numeric and names in an array
#--------------------------------
gene_LF3['drtype_all_vals'] = gene_LF3['drtype_numeric']
gene_LF3['drtype_all_names'] = gene_LF3['drtype']
gene_LF3['drtype_all_vals'] = gene_LF3.groupby('mutationinformation').drtype_all_vals.apply(list)
gene_LF3['drtype_all_vals'].head()
gene_LF3['drtype_all_names'] = gene_LF3.groupby('mutationinformation').drtype_all_names.apply(list)
gene_LF3['drtype_all_names'].head()
#---------------------------------
# Revised drtype: max(Multimode)
#--------------------------------
gene_LF3['drtype_multimode'] = gene_LF3.groupby('mutationinformation')['drtype_numeric'].agg(multimode)
gene_LF3['drtype_multimode']
# Now get the max from multimode
gene_LF3['drtype_mode'] = gene_LF3['drtype_multimode'].apply(lambda x: np.nanmax(x))
gene_LF3.head()
#----------------------
# Revised drtype: Max
#----------------------
gene_LF3.head()
gene_LF3['drtype_max'] = gene_LF3.groupby('mutationinformation')['drtype_numeric'].max()
gene_LF3.head()
foo = gene_LF3[['Mut', 'position', 'drtype', 'drtype_multimode', 'drtype_mode', 'drtype_max']]
foo2 = foo.sort_values(['position', 'Mut'])
###############################################################################
#%% Mapping 2: column '<dst>', drug
#=======================
# column name: <drug>
#=======================
# mapping 1.1: labels
dm_om_label_map = {dr_muts_col: 'DM'
, other_muts_col: 'OM'}
dm_om_label_map
gene_LF3['mutation_info_labels'] = gene_LF3['mutation_info'].map(dm_om_label_map)
# mapping 1.2: numeric
dm_om_num_map = {dr_muts_col: 1
, other_muts_col: 0}
gene_LF3['dm_om_numeric'] = gene_LF3['mutation_info'].map(dm_om_num_map)
gene_LF3['dm_om_numeric_orig'] = gene_LF3['mutation_info_orig'].map(dm_om_num_map)
gene_LF3['mutation_info'].value_counts()
gene_LF3['mutation_info_labels'].value_counts()
gene_LF3['mutation_info_orig'].value_counts()
gene_LF3['dm_om_numeric'].value_counts()
gene_LF3['dm_om_numeric_orig'].value_counts()
# Check value_counts: column '<drug>', mutation_info
gene_LF3['mutation_info'].value_counts()
gene_LF3['mutation_info_v1'].value_counts()
gene_LF3['mutation_info_orig'].value_counts()
#============================
# column name: <dst>
#============================
# copy dst column
gene_LF3['dst'] = gene_LF3[drug] # to allow cross checking
gene_LF3['dst'].equals(gene_LF3[drug])
# populate dst_multimode
gene_LF3['dst_multimode'] = gene_LF3[drug]
gene_LF3[drug].isnull().sum()
gene_LF3['dst_multimode'].isnull().sum()
gene_LF3['dst_multimode'].value_counts()
gene_LF3['dst_multimode'].value_counts().sum()
#%% Multimode: dst
# For each mutation, generate the revised dst which is the mode of dm_om_numeric
#=============================
# Recalculation: Revised dst
# max(multimode)
#=============================
# Get multimode for dm_om_numeric column
#dm_om_multimode_LF3 = gene_LF3.groupby('mutationinformation')['dm_om_numeric_orig'].agg(multimode)
dm_om_multimode_LF3 = gene_LF3.groupby('mutationinformation')['dm_om_numeric'].agg(multimode)
dm_om_multimode_LF3
dm_om_multimode_LF3.isnull().sum()
gene_LF3['dst_multimode_all'] = gene_LF3.groupby('mutationinformation')['dm_om_numeric'].agg(multimode)
gene_LF3['dst_multimode_all']
# Fill using multimode ONLY where NA in dst_multimode column
gene_LF3['dst_multimode'] = gene_LF3['dst_multimode'].fillna(dm_om_multimode_LF3)
gene_LF3['dst_multimode']
gene_LF3['dst_multimode'].value_counts()
#----------------------------------
# Revised dst column: max of mode
#----------------------------------
# Finally created a revised dst with the max from the multimode
# Now get the max from multimode
#gene_LF3['dst_mode'] = gene_LF3.groupby('mutationinformation')['dst_noNA'].max() # this somehow is not right!
#gene_LF3['dst_noNA'] = gene_LF3['dst_multimode'].apply(lambda x: np.nanmax(x))
gene_LF3['dst_mode'] = gene_LF3['dst_multimode'].apply(lambda x: np.nanmax(x)) #ML
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# NOTE: unexpected weirdness with above, so redoing it!
mmdf = pd.DataFrame(gene_LF3.groupby('mutationinformation')['dst_mode'].agg(multimode))
mmdf['dst2'] = mmdf['dst_mode'].apply(lambda x: int(max(x)))
mmdf=mmdf.reset_index()
# rename cols to make sure merge will have the names you expect
mmdf2 = mmdf.rename(columns = {'dst_mode':'dst_multimode', 'dst2':'dst_mode'})
# IMPORTANT!
gene_LF3_copy = gene_LF3.copy()
gene_LF3_copy.drop(["dst_mode", "dst_multimode", "dst_multimode_all"], axis = 1, inplace = True)
# Now merge gene_LF3.copy and mmdf2
gene_LF3_merged = pd.merge(gene_LF3_copy, mmdf2, on='mutationinformation')
df_check4 = gene_LF3_merged[['mutationinformation', 'dst', 'dst_multimode', 'dst_mode', 'position' ]]
# now reassign the merged df to gene_LF3 for integration with downstream
gene_LF3 = gene_LF3_merged.copy()
#-----------------------------------------------------------------------------
#-----------------------------------------------------------------------------
# sanity checks
#gene_LF3['dst_noNA'].equals(gene_LF3['dst_mode'])
gene_LF3[drug].value_counts()
#gene_LF3['dst_noNA'].value_counts()
gene_LF3['dst_mode'].value_counts()
if (gene_LF3['dst_mode'].value_counts().sum() == len(gene_LF3)) and (gene_LF3['dst_mode'].value_counts()[1] > gene_LF3[drug].value_counts()[1]) and gene_LF3['dst_mode'].value_counts()[0] > gene_LF3[drug].value_counts()[0]:
print('\nPASS: revised dst mode created successfully and the counts are more than <drug> col count')
else:
print('\nFAIL: revised dst mode numbers MISmatch')
#foo = gene_LF3[['Mut', 'position', 'dst', 'dst_multimode', 'dst_noNA', 'dst_mode']]
#foo2 = foo.sort_values(['position', 'Mut'])
print('\n------------------------------------------------------'
, '\nRevised counting: mutation_info i.e dm om column\n'
, '\n-----------------------------------------------------\n'
, '\n----------------------------------'
, '\nOriginal drug column count'
, '\n----------------------------------\n'
, gene_LF3[drug].value_counts()
, '\nTotal samples [original]', gene_LF3[drug].value_counts().sum()
, '\n----------------------------------'
, '\nRevised drug column count\n'
, '\n----------------------------------\n'
, gene_LF3['dst_mode'].value_counts()
, '\nTotal samples [revised]', gene_LF3['dst_mode'].value_counts().sum()
# , '\n----------------------------------'
# , '\nRevised drug column count: dst_noNA\n'
# , '\n----------------------------------\n'
# , gene_LF3['dst_noNA'].value_counts()
)
#%% Create revised mutation_info_column based on dst_mode
#---------------------------------------
# Create revised mutation_info_column
#---------------------------------------
# Will need to overwrite column 'mutation_info_labels', since downstream depends on it
# Make a copy you before overwriting
#gene_LF3['mutation_info_labels_v1'] = gene_LF3['mutation_info'].map(dm_om_label_map)
gene_LF3['mutation_info_labels_v1'] = gene_LF3['mutation_info_labels']
gene_LF3['mutation_info_labels_v1'].value_counts() == gene_LF3['mutation_info_labels'].value_counts()
# Now overwrite
gene_LF3['mutation_info_labels_dst'] = gene_LF3['dst_mode'].map({1: 'DM', 0: 'OM'})
gene_LF3['mutation_info_labels'] = gene_LF3['dst_mode'].map({1: 'DM', 0: 'OM'})
if all(gene_LF3['mutation_info_labels_dst'].value_counts() == gene_LF3['mutation_info_labels'].value_counts()):
print('\nPASS: Revised mutation_info column created successfully')
gene_LF3 = gene_LF3.drop(['mutation_info_labels_dst'], axis = 1)
else:
print('\nmutation info labels numbers mismatch'
, '\nPlease check section for mapping dst_mode to labels')
gene_LF3['mutation_info_orig'].value_counts()
#gene_LF3['mutation_info_labels'].value_counts()
gene_LF3['mutation_info_labels_orig'] = gene_LF3['mutation_info_orig'].map(dm_om_label_map)
gene_LF3['mutation_info_labels_orig'].value_counts()
#%% FIXME: Get multimode for dm_om_numeric column
#dm_om_multimode_LF4 = gene_LF3.groupby('mutationinformation')['dm_om_numeric_orig'].agg(multimode)
#dm_om_multimode_LF4
#gene_LF3['dst_multimode_numeric'] = gene_LF3['dst_multimode'].fillna(dm_om_multimode_LF4)
# %% sanity check for the revised dst
gene_LF3[drug].value_counts()
gene_LF3[drug].value_counts().sum()
gene_LF3['mutation_info_labels_orig'].value_counts()
gene_LF3['dst_mode'].value_counts()
gene_LF3['dst_mode'].value_counts().sum()
# direct comparision
gene_LF3['dst'].value_counts()
gene_LF3['mutation_info_labels'].value_counts()
gene_LF3['mutation_info_labels_v1'].value_counts()
#%% Lineage
gene_LF3['lineage'].value_counts()
# lineage_label_numeric = {'lineage1' : 1
# , 'lineage2' : 2
# , 'lineage3' : 3
# , 'lineage4' : 4
# , 'lineage5' : 5
# , 'lineage6' : 6
# , 'lineage7' : 7
# , 'lineageBOV' : 8}
lineage_label_numeric = {'L1' : 1
, 'L2' : 2
, 'L3' : 3
, 'L4' : 4
, 'L5' : 5
, 'L6' : 6
, 'L7' : 7
, 'LBOV' : 8}
lineage_label_numeric
#%% Lineage cols selected: gene_LF3_ColsSel
gene_LF3_ColsSel = gene_LF3.copy()
gene_LF3_ColsSel.index
gene_LF3_ColsSel.columns
#gene_LF3_ColsSel['index_orig_copy'] = gene_LF3_ColsSel['index_orig'] # delete
# copy column to allow cross checks after stripping white space
gene_LF3_ColsSel['lineage'] = gene_LF3_ColsSel['lineage'].str.strip()
gene_LF3_ColsSel['lineage_corrupt'] = gene_LF3_ColsSel['lineage']
all(gene_LF3_ColsSel['lineage_corrupt'].value_counts() == gene_LF3_ColsSel['lineage'].value_counts())
gene_LF3_ColsSel['lineage_corrupt'].value_counts()
gene_LF3_ColsSel = gene_LF3_ColsSel[['index_orig_copy', 'Mut', 'position', 'snp_frequency', 'lineage', 'lineage_corrupt']]
gene_LF3_ColsSel.columns
#%% tidy_split(): Lineage
# Create df with tidy_split: lineage
lf_lin_split = tidy_split(gene_LF3_ColsSel, 'lineage_corrupt', sep = ';')
lf_lin_split['lineage_corrupt'] = lf_lin_split['lineage_corrupt'].str.strip()
lf_lin_split['lineage_corrupt'].value_counts()
#%% Important sanity check for tidy_split(): lineage
# Split based on semi colon dr_muts_col
search = ";"
# count of occurrence of ";" in dr_muts_col: No.of semicolons + 1 is no. of rows created * occurence
count_df_lin = gene_LF3_ColsSel[['lineage']].copy()
count_df_lin['lineage_semicolon_count'] = gene_LF3_ColsSel.loc[:, 'lineage'].str.count(search, re.I)
lin_sc_C = count_df_lin['lineage_semicolon_count'].value_counts().reset_index()
lin_sc_C
lin_sc_C['index_semicolon'] = (lin_sc_C['index'] + 1) * lin_sc_C['lineage_semicolon_count']
lin_sc_C
expected_linC = lin_sc_C['index_semicolon'].sum() + gene_LF3_ColsSel['lineage'].isnull().sum()
expected_linC
if (len(lf_lin_split) == expected_linC):
print('\nPASS: tidy_split() length match for lineage')
else:
sys.exit('\nFAIL: tidy_split() length MISMATCH. Check lineage semicolon count')
###############################################################################
#%% Map lineage labels to numbers to allow metrics
lf_lin_split['lineage_numeric'] = lf_lin_split['lineage_corrupt'].map(lineage_label_numeric)
lf_lin_split['lineage_numeric'].value_counts()
#--------------------------------
# Add lineage_list: ALL values:
#--------------------------------
# Add all lineages for each mutation
#lf_lin_split['lineage_corrupt_list'] = lf_lin_split['lineage_corrupt'].copy()
#lf_lin_split['lineage_corrupt_list'].value_counts()
lf_lin_split['lineage_corrupt'].value_counts()
#lf_lin_split['lineage_corrupt_list'] = lf_lin_split['mutationinformation'].map(lf_lin_split.groupby('mutationinformati
#lf_lin_split['lineage_corrupt_list'] = lf_lin_split.groupby('mutationinformation').lineage_corrupt_list.apply(list)
lf_lin_tmp =lf_lin_split.groupby('Mut').lineage_corrupt.apply(list)
lf_lin_tmp = lf_lin_tmp.reset_index()
lf_lin_tmp.rename(columns={'lineage_corrupt': 'lineage_corrupt_list' }, inplace=True)
#lf_lin_split['lineage_corrupt_list'] = lf_lin_split.groupby('Mut').lineage_corrupt_list.apply(list).copy()
#lf_lin_split['lineage_corrupt_list'] = lf_lin_tmp
lf_lin_merged = pd.merge(lf_lin_split, lf_lin_tmp, on='Mut')
lf_lin_split.shape
lf_lin_merged.shape
# REASSIGN merged
lf_lin_split = lf_lin_merged.copy()
lf_lin_split['lineage_corrupt_list'].value_counts()
#--------------------------------
# Add lineage count: ALL
#--------------------------------
lf_lin_split['lineage_corrupt_count'] = lf_lin_split['lineage_corrupt_list'].apply(lambda x : len(list(x)))
#--------------------------------
# Add lineage unique count
#--------------------------------
lf_lin_split['lineage_corrupt_ucount'] = lf_lin_split['Mut'].map(lf_lin_split.groupby('Mut')['lineage_corrupt'].nunique())
#lf_lin_split['lineage_corrupt_ucount'] = lf_lin_split['lineage_corrupt']
lf_lin_split['lineage_corrupt_ucount'].value_counts()
#--------------------------------
# Add lineage_set
#--------------------------------
lf_lin_split['lineage_set'] = lf_lin_split['lineage_corrupt_list'].apply(lambda x : set(list(x)))
lf_lin_split['lineage_ulist'] = lf_lin_split['lineage_set'].apply(lambda x : list(x))
#-------------------------------------
# Lineage numeric mode: multimode
#-------------------------------------
#lf_lin_split['lineage_multimode'] = lf_lin_split.groupby('mutationinformation')['lineage_numeric'].agg(multimode)
#lf_lin_split['lineage_multimode'] = lf_lin_split.groupby('Mut')['lineage_numeric'].agg(multimode)
lin_mm_tmp = pd.DataFrame(lf_lin_split.groupby('Mut')['lineage_numeric'].agg(multimode))
lin_mm_tmp=lin_mm_tmp.reset_index()
lin_mm_tmp.rename(columns={'lineage_numeric':'lineage_multimode'}, inplace=True)
lf_lin_split_merged = pd.merge(lf_lin_split, lin_mm_tmp, on='Mut')
#lf_lin_split['lineage_multimode'].value_counts() # cant take max as it doesn't mean anyting!
#REASSIGN
lf_lin_split = lf_lin_split_merged.copy()
###############################################################################
#%% Select only the columns you want to merge from lf_lin_split
lf_lin_split.columns
lf_lin_split_ColSel = lf_lin_split[['lineage_corrupt_list','lineage_corrupt_count'
, 'lineage_corrupt_ucount' ,'lineage_ulist', 'lineage_multimode']].copy()
lf_lin_split_ColSel.columns
lf_lin_split_ColSel.rename(columns = {'lineage_corrupt_list' : 'lineage_list_all'
, 'lineage_corrupt_count' : 'lineage_count_all'
, 'lineage_corrupt_ucount' : 'lineage_count_unique'
, 'lineage_ulist' : 'lineage_list_unique'
, 'lineage_multimode' : 'lineage_multimode'}, inplace = True)
lf_lin_split_ColSel.columns
ncols_to_merge = len(lf_lin_split_ColSel.columns)
#%% Final merge: gene_LF3 with lf_lin_split_ColSel: gene_LF4
#===============================
# merge: inner join by default
# join: left join default
# concat: outer join by default
#df1.join(df2)
#===============================
len(lf_lin_split)
len(gene_LF3)
# Dropping duplicates from lineage df
lf_lin_split_dups = lf_lin_split_ColSel[lf_lin_split_ColSel.index.duplicated()]
lf_lin_split_U = lf_lin_split_ColSel[~lf_lin_split_ColSel.index.duplicated()]
if len(lf_lin_split_U) == len(SnpFDict):
print('\nPASS: Duplicate entries removed from lf_lin'
, '\nReady to start the final merge to generate gene_LF4')
else:
print('\nFAIL: DF after duplicate removal numbers MISmatch ')
gene_LF3.index
lf_lin_split_U.index
#--------------------
# Creating gene_LF4
#--------------------
if all(gene_LF3.index.isin(lf_lin_split_U.index)) :
print('\nIndices match, staring final merge...')
gene_LF4 = gene_LF3.join(lf_lin_split_U)
if len(gene_LF4.columns) == len(gene_LF3.columns) + ncols_to_merge:
print('\nPASS: gene_LF4 created after successfully merging with lineage info'
, '\nShape of gene_LF4:', gene_LF4.shape)
else:
sys.exit('\nFAIL: gene_LF4 could not be created. Dfs could not be merged. Check indices or dfs length again!')
#----------------------------------------
# Dropping redundant cols from gene_LF4
#----------------------------------------
if all(gene_LF4.index == gene_LF4['Mut']) and gene_LF4['index_orig'].equals(gene_LF4['index_orig_copy']):
gene_LF4.reset_index(inplace=True)
#gene_LF4 = gene_LF4.set_index(['index_orig'])
print('\nPass Mutationinformationa and index columns checked, the duplicates can now be dropped')
gene_LF4 = gene_LF4.drop(['Mut_copy', 'index_orig_copy', 'mutation_info_v1' ], axis = 1)
#%% Final output with relevant columns
print('\nFinal output file: Dim of gene_LF4:', gene_LF4.shape)
# cols_to_output = ['mutationinformation', 'id', 'sample', 'lineage', 'sublineage',
# 'country_code', 'drtype', 'pyrazinamide', 'mutation', 'drug_name',
# 'mutation_info', 'mutation_info_orig', 'wild_type', 'mutant_type',
# 'position', 'Mut', 'index_orig', 'pos_count', 'total_id_ucount',
# 'snp_frequency', 'maf', 'drtype_numeric', 'drtype_all_vals',
# 'drtype_all_names', 'drtype_multimode', 'drtype_mode', 'drtype_max',
# 'mutation_info_labels', 'dm_om_numeric', 'dm_om_numeric_orig', 'dst',
# 'dst_multimode', 'dst_multimode_all', 'dst_mode', 'lineage_list_all',
# 'lineage_count_all', 'lineage_count_unique', 'lineage_list_unique',
# 'lineage_multimode']
#%% OUTFILE 3, write file mCSM style muts
snps_only = pd.DataFrame(gene_LF4['mutationinformation'].unique())
snps_only.head()
# assign column name
snps_only.columns = ['mutationinformation']
# count how many positions this corresponds to
pos_only = pd.DataFrame(gene_LF4['position'].unique())
pos_only
print('Checking NA in snps...')# should be 0
if snps_only.mutationinformation.isna().sum() == 0:
print ('PASS: NO NAs/missing entries for SNPs'
, '\n===============================================================')
else:
sys.exit('FAIL: SNP has NA, Possible mapping issues from dict?')
# write file: mCSM muts
out_filename_mcsmsnps = gene.lower() + '_mcsm_formatted_snps.csv'
outfile_mcsmsnps = outdir + '/' + out_filename_mcsmsnps
print('\n----------------------------------'
, '\nWriting file: mCSM style muts'
, '\n----------------------------------'
, '\nFile:', outfile_mcsmsnps
, '\nmutation format (SNP): {WT}<POS>{MUT}'
, '\nNo. of distinct muts:', len(snps_only)
, '\nNo. of distinct positions:', len(pos_only)
, '\n=============================================================')
snps_only.to_csv(outfile_mcsmsnps, header = False, index = False)
print('Finished writing:', outfile_mcsmsnps
, '\nNo. of rows:', len(snps_only)
, '\nNo. of cols:', len(snps_only.columns)
, '\n=============================================================')
del(out_filename_mcsmsnps)
###############################################################################
#%% OUTFILE 4, write file frequency of position count
metadata_pos = pd.DataFrame(gene_LF4['position'])
metadata_pos['meta_pos_count'] = metadata_pos['position'].map(z1)
metadata_pos['meta_pos_count'].value_counts()
metadata_pos.sort_values(by = ['meta_pos_count'], ascending = False, inplace = True)
out_filename_metadata_poscounts = gene.lower() + '_metadata_poscounts.csv'
outfile_metadata_poscounts = outdir + '/' + out_filename_metadata_poscounts
print('\n----------------------------------'
, '\nWriting file: Metadata poscounts'
, '\n----------------------------------'
, '\nFile:', outfile_metadata_poscounts
, '\n============================================================')
metadata_pos.to_csv(outfile_metadata_poscounts, header = True, index = False)
print('Finished writing:', outfile_metadata_poscounts
, '\nNo. of rows:', len(metadata_pos)
, '\nNo. of cols:', len(metadata_pos.columns)
, '\n=============================================================')
del(out_filename_metadata_poscounts)
###############################################################################
#%% OUTFILE 5, write file <gene>_metadata
# where each row has UNIQUE mutations NOT unique sample ids
out_filename_metadata = gene.lower() + '_metadata.csv'
outfile_metadata = outdir + '/' + out_filename_metadata
print('\n----------------------------------'
, '\nWriting file: LF formatted data'
, '\n----------------------------------'
, '\nFile:', outfile_metadata
, '\n============================================================')
gene_LF4.to_csv(outfile_metadata, header = True, index = False)
print('Finished writing:', outfile_metadata
, '\nNo. of rows:', len(gene_LF4)
, '\nNo. of cols:', len(gene_LF4.columns)
, '\n=============================================================')
del(out_filename_metadata)
###############################################################################
#%% OUTFILE 6, write file MSA plots
#write file: mCSM style but with repitions for MSA and logo plots
all_muts_msa = pd.DataFrame(gene_LF4['mutationinformation'])
all_muts_msa.head()
# assign column name
all_muts_msa.columns = ['mutationinformation']
# make sure it is string
all_muts_msa.columns.dtype
# sort the column
all_muts_msa_sorted = all_muts_msa.sort_values(by = 'mutationinformation')
# create an extra column with protein name
#all_muts_msa_sorted = all_muts_msa_sorted.assign(fasta_name = '3PL1')
#all_muts_msa_sorted.head()
# rearrange columns so the fasta name is the first column (required for mutate.script)
#all_muts_msa_sorted = all_muts_msa_sorted[['fasta_name', 'mutationinformation']]
all_muts_msa_sorted.head()
print('Checking NA in snps...')# should be 0
if all_muts_msa.mutationinformation.isna().sum() == 0:
print ('PASS: NO NAs/missing entries for SNPs'
, '\n===============================================================')
else:
sys.exit('FAIL: SNP has NA, Possible mapping issues from dict?')
out_filename_msa = gene.lower() +'_all_muts_msa.csv'
outfile_msa = outdir + '/' + out_filename_msa
print('\n----------------------------------'
, '\nWriting file: mCSM style muts for msa'
, '\n----------------------------------'
, '\nFile:', outfile_msa
, '\nmutation format (SNP): {WT}<POS>{MUT}'
, '\nNo.of lines of msa:', len(all_muts_msa))
all_muts_msa_sorted.to_csv(outfile_msa, header = False, index = False)
print('Finished writing:', outfile_msa
, '\nNo. of rows:', len(all_muts_msa)
, '\nNo. of cols:', len(all_muts_msa.columns)
, '\n=============================================================')
del(out_filename_msa)
###############################################################################
#%% OUTFILE 7, write file mutational position with count
# write file for mutational positions
# count how many positions this corresponds to
pos_only = pd.DataFrame(gene_LF4['position'].unique())
# assign column name
pos_only.columns = ['position']
# make sure dtype of column position is int or numeric and not string
pos_only.position.dtype
pos_only['position'] = pos_only['position'].astype(int)
pos_only.position.dtype
# sort by position value
pos_only_sorted = pos_only.sort_values(by = 'position', ascending = True)
out_filename_pos = gene.lower() + '_mutational_positons.csv'
outfile_pos = outdir + '/' + out_filename_pos
print('\n----------------------------------'
, '\nWriting file: mutational positions'
, '\n----------------------------------'
, '\nFile:', outfile_pos
, '\nNo. of distinct positions:', len(pos_only_sorted)
, '\n=============================================================')
pos_only_sorted.to_csv(outfile_pos, header = True, index = False)
print('Finished writing:', outfile_pos
, '\nNo. of rows:', len(pos_only_sorted)
, '\nNo. of cols:', len(pos_only_sorted.columns)
, '\n============================================================='
, '\n')
del(out_filename_pos)
###############################################################################
#%% Quick summary output
print('\n============================================'
, '\nQuick summary output for', drug, 'and' , gene.lower()
, '\n============================================'
, '\nTotal samples:', total_samples
, '\nNo. of Sus and Res [original]', drug, 'samples:\n', meta_data[drug].value_counts()
, '\n'
, '\nPercentage of Sus and Res [original]', drug, 'samples:\n', meta_data[drug].value_counts(normalize = True)*100
, '\n'
, '\nNo. of Sus and Res [Revised]', drug, 'samples:\n', gene_LF4['dst_mode'].value_counts()
, '\n'
, '\nPercentage of Sus and Res [Revised]', drug, 'samples:\n', gene_LF4['dst_mode'].value_counts(normalize = True)*100
, '\n'
, '\nTotal no. of unique nsSNPs [check1: length of snps_only]:', len(snps_only)
, '\nTotal no.of unique nSNSPs [check3, gene_LF4]:', gene_LF4['mutationinformation'].nunique()
, '\nTotal no.of unique positions associated with missense muts:', gene_LF4['position'].nunique()
, '\nTotal no. of samples with nsSNPs:', len(gene_LF4)
, '\nTotal no. of unique sample ids with nsSNPs:', gene_LF4['id'].nunique()
)
if 'common_muts' in globals():
print('\nTotal no.of unique dr muts:' , dr_muts_rev.nunique()
, '\nTotal no.of unique other muts:' , other_muts_rev.nunique()
, '\nTotal no. of unique nsSNPs [check2: dr_muts + other_muts]:', dr_muts_rev.nunique()+other_muts_rev.nunique()
)
if dr_muts.isin(other_muts).sum() & other_muts.isin(dr_muts).sum() > 0:
print('\nTotal no.of samples with ambiguous muts:', len(inspect)
#, '\nTotal no.of unique ambiguous muts:', len(common_muts)
, '\nTotal no.of unique ambiguous muts:', inspect['mutation'].nunique()
, '\n============================================================='
, '\nPost resolving ambiguity\n'
, ambig_muts_rev_df['mutation_info_REV'].value_counts())
else:
print('No ambiguous muts present, hence no summary')
print('\n============================================================='
, '\n============================================================='
, '\n###############################\n'
, '\nNumbers for ML workflows...'
, '\n###############################\n'
, '\ncolumn name [drug, old]:', drug, '\n'
, gene_LF4[drug].value_counts()
, '\nTotal drug samples[old]:', gene_LF4[drug].value_counts().sum()
, '\nPercentages:\n'
, gene_LF4[drug].value_counts(normalize = True)
, '\n-------------------------------------------------------------'
, '\ncolumn name [drug, revised]: dst_mode\n'
, gene_LF4['dst_mode'].value_counts()
, '\nTotal drug samples[revised]:', gene_LF4['dst_mode'].value_counts().sum()
, '\nPercentages:\n'
, gene_LF4['dst_mode'].value_counts(normalize = True)
, '\n-------------------------------------------------------------'
, '\n-------------------------------------------------------------'
, '\ncolumn name: drtye_mode\n'
, gene_LF4['drtype_mode'].value_counts()
, '\nTotal drtype_mode:', gene_LF4['drtype_mode'].value_counts().sum()
, '\nPercentages:\n'
, gene_LF4['drtype_mode'].value_counts(normalize = True)
, '\n-------------------------------------------------------------'
, '\n-------------------------------------------------------------'
, '\ncolumn name [dm_om, old]: mutation_info_orig\n'
, gene_LF4['mutation_info_orig'].value_counts()
, '\nTotal mutation_info_orig:', gene_LF4['mutation_info_orig'].value_counts().sum()
, '\nPercentages:\n'
, gene_LF4['mutation_info_orig'].value_counts(normalize = True)
, '\n-------------------------------------------------------------'
, '\n-------------------------------------------------------------'
, '\ncolumn name [dm_om, revised]: mutation_info\n'
, gene_LF4['mutation_info'].value_counts()
, '\nTotal mutation_info:', gene_LF4['mutation_info'].value_counts().sum()
, '\nPercentages:\n'
, gene_LF4['mutation_info'].value_counts(normalize = True)
, '\n-------------------------------------------------------------'
, '\n============================================================='
)
#=======================================================================
print(u'\u2698' * 50,
'\nEnd of script: Data extraction and writing files'
'\n' + u'\u2698' * 50 )
#%% end of script