################# # Numbers ################## all_dm_om_df = dm_om_wf_lf_data(df = merged_df3, gene = gene) # # lf_duet = all_dm_om_df[['lf_duet']] # table(lf_duet$param_type) ################################################################ #====================== # Data: Dist+genomics #====================== lf_dist_genP = all_dm_om_df[['lf_dist_gen']] wf_dist_genP = all_dm_om_df[['wf_dist_gen']] levels(lf_dist_genP$param_type) #lf_dist_genP$param_type <- factor(lf_dist_genP$param_type, levels=c("Log10(MAF)", "Lig Dist(Å)", "PPI Dist(Å)")) table(lf_dist_genP$param_type) genomics_param = c("Log10(MAF)") dist_genP = lf_bp2(lf_dist_genP #, p_title , violin_quantiles = c(0.5), monochrome = F) #------------------- # Genomics data plot #------------------- genomics_dataP = lf_dist_genP[lf_dist_genP$param_type%in%genomics_param,] genomics_dataP$param_type = factor(genomics_dataP$param_type) table(genomics_dataP$param_type) genomicsP = lf_bp2(genomics_dataP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F) genomicsP #check wilcox.test(wf_dist_genP$`Log10(MAF)`[wf_dist_genP$mutation_info_labels=="R"] , wf_dist_genP$`Log10(MAF)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE) tapply(wf_dist_genP$`Log10(MAF)`, wf_dist_genP$mutation_info_labels, summary) #------------------- # Distance data plot: not genomics data #------------------- dist_dataP = lf_dist_genP[!lf_dist_genP$param_type%in%genomics_param,] #dist_dataP$param_type = factor(dist_dataP$param_type) table(dist_dataP$param_type) distanceP = lf_bp2(dist_dataP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F) distanceP # check wilcox.test(wf_dist_genP$`PPI Dist(Å)`[wf_dist_genP$mutation_info_labels=="R"] , wf_dist_genP$`PPI Dist(Å)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE) wilcox.test(wf_dist_genP$`Lig Dist(Å)`[wf_dist_genP$mutation_info_labels=="R"] , wf_dist_genP$`Lig Dist(Å)`[wf_dist_genP$mutation_info_labels=="S"], paired = FALSE) tapply(wf_dist_genP$`PPI Dist(Å)`, wf_dist_genP$mutation_info_labels, summary) tapply(wf_dist_genP$`Lig Dist(Å)`, wf_dist_genP$mutation_info_labels, summary) #============== # Plot:DUET #============== lf_duetP = all_dm_om_df[['lf_duet']] #lf_duetP = lf_duet[!lf_duet$param_type%in%c(static_colsP),] table(lf_duetP$param_type) lf_duetP$param_type = factor(lf_duetP$param_type) table(lf_duetP$param_type) duetP = lf_bp2(lf_duetP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 0.2) #============== # Plot:FoldX #============== lf_foldxP = all_dm_om_df[['lf_foldx']] #lf_foldxP = lf_foldx[!lf_foldx$param_type%in%c(static_colsP),] table(lf_foldxP$param_type) lf_foldxP$param_type = factor(lf_foldxP$param_type) table(lf_foldxP$param_type) foldxP = lf_bp2(lf_foldxP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 0.1) #============== # Plot:DeepDDG #============== lf_deepddgP = all_dm_om_df[['lf_deepddg']] #lf_deepddgP = lf_deepddg[!lf_deepddg$param_type%in%c(static_colsP),] table(lf_deepddgP$param_type) lf_deepddgP$param_type = factor(lf_deepddgP$param_type) table(lf_deepddgP$param_type) deepddgP = lf_bp2(lf_deepddgP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 0.2) deepddgP #============== # Plot: Dynamut2 #============== lf_dynamut2P = all_dm_om_df[['lf_dynamut2']] #lf_dynamut2P = lf_dynamut2[!lf_dynamut2$param_type%in%c(static_colsP),] table(lf_dynamut2P$param_type) lf_dynamut2P$param_type = factor(lf_dynamut2P$param_type) table(lf_dynamut2P$param_type) dynamut2P = lf_bp2(lf_dynamut2P #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 0.2) #============== # Plot:ConSurf #============== lf_consurfP = all_dm_om_df[['lf_consurf']] #lf_consurfP = lf_consurf[!lf_consurf$param_type%in%c(static_colsP),] table(lf_consurfP$param_type) lf_consurfP$param_type = factor(lf_consurfP$param_type) table(lf_consurfP$param_type) consurfP = lf_bp2(lf_consurfP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F) #============== # Plot:PROVEAN #============== lf_proveanP = all_dm_om_df[['lf_provean']] #lf_proveanP = lf_provean[!lf_provean$param_type%in%c(static_colsP),] table(lf_proveanP$param_type) lf_proveanP$param_type = factor(lf_proveanP$param_type) table(lf_proveanP$param_type) proveanP = lf_bp2(lf_proveanP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F) #============== # Plot:SNAP2 #============== lf_snap2P = all_dm_om_df[['lf_snap2']] #lf_snap2P = lf_snap2[!lf_snap2$param_type%in%c(static_colsP),] table(lf_snap2P$param_type) lf_snap2P$param_type = factor(lf_snap2P$param_type) table(lf_snap2P$param_type) snap2P = lf_bp2(lf_snap2P #, p_title = "" , violin_quantiles = c(0.5), monochrome = F) ############################################################################ #================ # Plot: mCSM-lig #================ lf_mcsm_ligP = all_dm_om_df[['lf_mcsm_lig']] #lf_mcsm_ligP = lf_mcsm_lig[!lf_mcsm_lig$param_type%in%c(static_colsP),] table(lf_mcsm_ligP$param_type) lf_mcsm_ligP$param_type = factor(lf_mcsm_ligP$param_type) table(lf_mcsm_ligP$param_type) mcsmligP = lf_bp2(lf_mcsm_ligP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 1) #================= # Plot: mmCSM-lig2 #================= lf_mmcsm_lig2P = all_dm_om_df[['lf_mmcsm_lig2']] #lf_mmcsm_lig2P = lf_mmcsm_lig2P[!lf_mmcsm_lig2P$param_type%in%c(static_colsP),] table(lf_mmcsm_lig2P$param_type) lf_mmcsm_lig2P$param_type = factor(lf_mmcsm_lig2P$param_type) table(lf_mmcsm_lig2P$param_type) mcsmlig2P = lf_bp2(lf_mmcsm_lig2P #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 1) mcsmlig2P #================ # Plot: mCSM-ppi2 #================ if (tolower(gene)%in%geneL_ppi2){ lf_mcsm_ppi2P = all_dm_om_df[['lf_mcsm_ppi2']] #lf_mcsm_ppi2P = lf_mcsm_ppi2[!lf_mcsm_ppi2$param_type%in%c(static_colsP),] table(lf_mcsm_ppi2P$param_type) lf_mcsm_ppi2P$param_type = factor(lf_mcsm_ppi2P$param_type) table(lf_mcsm_ppi2P$param_type) mcsmppi2P = lf_bp2(lf_mcsm_ppi2P #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 1) } #============== # Plot: mCSM-NA #============== if (tolower(gene)%in%geneL_na){ lf_mcsm_naP = all_dm_om_df[['lf_mcsm_na']] #lf_mcsm_naP = lf_mcsm_na[!lf_mcsm_na$param_type%in%c(static_colsP),] table(lf_mcsm_naP$param_type) lf_mcsm_naP$param_type = factor(lf_mcsm_naP$param_type) table(lf_mcsm_naP$param_type) mcsmnaP = lf_bp2(lf_mcsm_naP #, p_title = "" , violin_quantiles = c(0.5), monochrome = F , dot_transparency = 1) } ###################################### # Outplot with stats ###################################### outdir_images = paste0("~/git/Writing/thesis/images/results/", tolower(gene), "/") dm_om_combinedP = paste0(outdir_images ,tolower(gene) ,"_dm_om_all.svg" ) cat("DM OM plots with stats:", dm_om_combinedP) svg(dm_om_combinedP, width = 32, height = 18) cowplot::plot_grid( cowplot::plot_grid(duetP, foldxP, deepddgP, dynamut2P, genomicsP, distanceP , nrow=1 , rel_widths = c(1/7, 1/7,1/7,1/7, 1/7, 1.75/7)), #, rel_widths = c(1/8, 1/8,1/8,1/8, 1/8, 2.75/8)), # for 3 distances cowplot::plot_grid(consurfP, proveanP, snap2P , mcsmligP , mcsmlig2P , mcsmppi2P #, mcsmnaP , nrow=1), nrow=2) dev.off() #foo = lf_consurfP # proveanP = lf_bp2(lf_proveanP, colour_categ = "mutation_info_labels" # , p_title = paste0("Evolutionary conservation") # , dot_transparency = 1 # , violin_quantiles = c(0.5), monochrome = F) # # proveanP