#!/usr/bin/env Rscript ######################################################### # TASK: producing boxplots for dr and other muts ######################################################### #======================================================================= # working dir and loading libraries getwd() setwd("~/git/LSHTM_analysis/scripts/plotting") getwd() source("Header_TT.R") #library(ggplot2) #library(data.table) #library(dplyr) #=========== # input #=========== source("combining_dfs_plotting.R") #=========== # output #=========== logo_plot = "logo_plot.svg" plot_logo_plot = paste0(plotdir,"/", logo_plot) #========================== # This will return: # df with NA for pyrazinamide: # merged_df2 # merged_df3 # df without NA for pyrazinamide: # merged_df2_comp # merged_df3_comp #=========================== ########################### # Data for plots # you need merged_df2 or merged_df2_comp # since this is one-many relationship # i.e the same SNP can belong to multiple lineages # using the _comp dataset means # we lose some muts and at this level, we should use # as much info as available, hence use df with NA # This will the first plotting df # Then subset this to extract dr muts only (second plottig df) ########################### #%%%%%%%%%%%%%%%%%%%%%%%%% # uncomment as necessary # REASSIGNMENT #my_data = merged_df2 #my_data = merged_df2_comp #my_data = merged_df3 my_data = merged_df3_comp #%%%%%%%%%%%%%%%%%%%%%%%%%% # delete variables not required rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp) # quick checks colnames(my_data) str(my_data) c1 = unique(my_data$position) nrow(my_data) cat("No. of rows in my_data:", nrow(my_data) , "\nDistinct positions corresponding to snps:", length(c1) , "\n===========================================================") #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # FIXME: Think and decide what you want to remove # mut_pos_occurence < 1 or sample_pos_occurrence <1 # get freq count of positions so you can subset freq<1 require(data.table) #setDT(my_data)[, mut_pos_occurrence := .N, by = .(position)] #265, 14 #extract freq_pos>1 #my_data_snp = my_data[my_data$occurrence!=1,] #u = unique(my_data_snp$position) #73 #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # REASSIGNMENT to prevent changing code my_data_snp = my_data #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% #======================================================================= #%% logo plots from dataframe ############# # PLOTS: ggseqlogo with custom height # https://omarwagih.github.io/ggseqlogo/ ############# #require(ggplot2) #require(tidyverse) library(ggseqlogo) foo = my_data_snp[, c("position", "mutant_type","duet_scaled", "or_mychisq" , "mut_prop_polarity", "mut_prop_water") ] my_data_snp$log10or = log10(my_data_snp$or_mychisq) bar = my_data_snp[, c("position", "mutant_type", "or_mychisq", "log10or")] bar_or = my_data_snp[, c("position", "mutant_type", "or_mychisq")] wide_df_or <- bar_or %>% spread(position, or_mychisq, fill = 0) wide_df_or = as.matrix(wide_df_or) rownames(wide_df_or) = wide_df_or[,1] wide_df_or = wide_df_or[,-1] # custom height (OR) logo plot: yayy works ggseqlogo(wide_df_or, method="custom", seq_type="aa") + ylab("my custom height") + theme(legend.position = "bottom" , axis.text.x = element_text(size = 11 , angle = 90 , hjust = 1 , vjust = 0.4) , axis.text.y = element_text(size = 15 , angle = 0 , hjust = 1 , vjust = 0))+ labs(title = "AA logo plot" , x = "Wild-type position" , y = "OR") #%% end of logo plot with OR as height #======================================================================= # extracting data with log10R bar_logor = my_data_snp[, c("position", "mutant_type", "log10or")] wide_df_logor <- bar_logor %>% spread(position, log10or, fill = 0) wide_df_logor = as.matrix(wide_df_logor) rownames(wide_df_logor) = wide_df_logor[,1] wide_df_logor = wide_df_logor[,-1] # custom height (log10OR) logo plot: yayy works ggseqlogo(wide_df_logor, method="custom", seq_type="aa") + ylab("my custom height") + theme(legend.position = "bottom" , axis.text.x = element_text(size = 11 , angle = 90 , hjust = 1 , vjust = 0.4) , axis.text.y = element_text(size = 15 , angle = 0 , hjust = 1 , vjust = 0))+ labs(title = "AA logo plot" , x = "Wild-type position" , y = "Log10(OR)") #======================================================================= #%% logo plot from sequence ################# # Plot: LOGOLAS (ED plots) # link: https://github.com/kkdey/Logolas # on all pncA samples: output of mutate.py ################ library(Logolas) # data was pnca_msa.txt #FIXME: generate this file seqs = read.csv("~/git//Data/pyrazinamide/snp_seqsfile.txt" , header = FALSE , stringsAsFactors = FALSE)$V1 # my_data: useful! logomaker(seqs, type = "EDLogo", color_type = "per_symbol" , return_heights = TRUE) logomaker(seqs, type = "Logo", color_type = "per_symbol") #%% end of script #=======================================================================