getwd() setwd("~/git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts/plotting") getwd() ######################################################################## # Installing and loading required packages # ######################################################################## source("../Header_TT.R") #source("../barplot_colour_function.R") #require(data.table) ######################################################################## # Read file: call script for combining df for PS # ######################################################################## source("../combining_two_df.R") #---------------------- PAY ATTENTION # the above changes the working dir #[1] "git/LSHTM_analysis/mcsm_analysis/pyrazinamide/scripts" #---------------------- PAY ATTENTION #========================== # This will return: # df with NA for pyrazinamide: # merged_df2 # merged_df3 # df without NA for pyrazinamide: # merged_df2_comp # merged_df3_comp #=========================== ########################### # Data for plots # you need merged_df2 or merged_df2_comp # since this is one-many relationship # i.e the same SNP can belong to multiple lineages # using the _comp dataset means # we lose some muts and at this level, we should use # as much info as available, hence use df with NA ########################### # uncomment as necessary #%%%%%%%%%%%%%%%%%%%%%%%% # REASSIGNMENT my_df = merged_df2 #my_df = merged_df2_comp #%%%%%%%%%%%%%%%%%%%%%%%% # delete variables not required rm(merged_df2, merged_df2_comp, merged_df3, merged_df3_comp) # quick checks colnames(my_df) str(my_df) # Ensure correct data type in columns to plot: need to be factor is.factor(my_df$lineage) my_df$lineage = as.factor(my_df$lineage) is.factor(my_df$lineage) table(my_df$mutation_info); str(my_df$mutation_info) # subset df with dr muts only my_df_dr = subset(my_df, mutation_info == "dr_mutations_pyrazinamide") table(my_df_dr$mutation_info) ######################################################################## # end of data extraction and cleaning for plots # ######################################################################## #========================== # Run two times: # uncomment as necessary # 1) for all muts # 2) for dr_muts #=========================== #%%%%%%%%%%%%%%%%%%%%%%%% # REASSIGNMENT #================ # for ALL muts #================ plot_df = my_df my_plot_name = 'lineage_dist_PS.svg' #my_plot_name = 'lineage_dist_PS_comp.svg' #================ # for dr muts ONLY #================ #plot_df = my_df_dr #my_plot_name = 'lineage_dist_dr_PS.svg' #my_plot_name = 'lineage_dist_dr_PS_comp.svg' #%%%%%%%%%%%%%%%%%%%%%%%% #========================== # Plot: Lineage Distribution # x = mcsm_values, y = dist # fill = stability #============================ #=================== # Data for plots #=================== table(plot_df$lineage); str(plot_df$lineage) # subset only lineages1-4 sel_lineages = c("lineage1" , "lineage2" , "lineage3" , "lineage4") # uncomment as necessary df_lin = subset(plot_df, subset = lineage %in% sel_lineages ) # refactor df_lin$lineage = factor(df_lin$lineage) table(df_lin$lineage) #{RESULT: No of samples within lineage} #lineage1 lineage2 lineage3 lineage4 length(unique(df_lin$Mutationinformation)) #{Result: No. of unique mutations the 4 lineages contribute to} # sanity checks r1 = 2:5 # when merged_df2 used: because there is missing lineages if(sum(table(plot_df$lineage)[r1]) == nrow(df_lin)) { print ("sanity check passed: numbers match") } else{ print("Error!: check your numbers") } #%%%%%%%%%%%%%%%%%%%%%%%%% # REASSIGNMENT df <- df_lin #%%%%%%%%%%%%%%%%%%%%%%%%% rm(df_lin) #****************** # generate distribution plot of lineages #****************** # basic: could improve this! #library(plotly) #library(ggridges) g <- ggplot(df, aes(x = ratioDUET)) + geom_density(aes(fill = DUET_outcome) , alpha = 0.5) + facet_wrap(~ lineage, scales = "free") + ggtitle("Kernel Density estimates of Protein stability by lineage") ggplotly(g) # 2 : ggridges (good!) my_ats = 15 # axis text size my_als = 20 # axis label size my_labels = c('Lineage 1', 'Lineage 2', 'Lineage 3', 'Lineage 4') names(my_labels) = c('lineage1', 'lineage2', 'lineage3', 'lineage4') # set output dir for plots getwd() setwd("~/git/Data/pyrazinamide/output/plots") getwd() # check plot name my_plot_name # output svg svg(my_plot_name) printFile = ggplot(df, aes(x = ratioDUET , y = DUET_outcome))+ #printFile=geom_density_ridges_gradient( geom_density_ridges_gradient(aes(fill = ..x..) , scale = 3 , size = 0.3 ) + facet_wrap( ~lineage , scales = "free" # , switch = 'x' , labeller = labeller(lineage = my_labels) ) + coord_cartesian( xlim = c(-1, 1) # , ylim = c(0, 6) # , clip = "off" ) + scale_fill_gradientn(colours = c("#f8766d", "white", "#00bfc4") , name = "DUET" ) + theme(axis.text.x = element_text(size = my_ats , angle = 90 , hjust = 1 , vjust = 0.4) # , axis.text.y = element_text(size = my_ats # , angle = 0 # , hjust = 1 # , vjust = 0) , axis.text.y = element_blank() , axis.title.x = element_blank() , axis.title.y = element_blank() , axis.ticks.y = element_blank() , plot.title = element_blank() , strip.text = element_text(size = my_als) , legend.text = element_text(size = 10) , legend.title = element_text(size = my_als) # , legend.position = c(0.3, 0.8) # , legend.key.height = unit(1, 'mm') ) print(printFile) dev.off() #=!=!=!=!=!=!=! # COMMENT: Not much differences in the distributions # when using merged_df2 or merged_df2_comp. # Also, the lineage differences disappear when looking at all muts # The pattern we are interested in is possibly only for dr_mutations #=!=!=!=!=!=!=! #=================================================== # COMPARING DISTRIBUTIONS: KS test # run: "../KS_test_PS.R"