# count numbers for ML #source("~/git/LSHTM_analysis/config/alr.R") #source("~/git/LSHTM_analysis/config/embb.R") #source("~/git/LSHTM_analysis/config/gid.R") #source("~/git/LSHTM_analysis/config/katg.R") source("~/git/LSHTM_analysis/config/pnca.R") #source("~/git/LSHTM_analysis/config/rpob.R") source("~/git/LSHTM_analysis/scripts/plotting/get_plotting_dfs.R") gene gene_match nrow(merged_df3) ############################################## #============= # mutation_info: revised labels #============== table(merged_df3$mutation_info) sum(table(merged_df3$mutation_info)) table(merged_df3$mutation_info_orig) ############################################## #============= # , dst_mode: revised labels #============== table(merged_df3$dst) # orig sum(table(merged_df3$dst)) table(merged_df3$dst_mode) #table(merged_df3[dr_muts_col]) sum(table(merged_df3$drtype_mode)) ############################################## #============= # drtype: revised labels #============== table(merged_df3$drtype) #orig table(merged_df3$drtype_mode) # mapping 2.1: numeric # drtype_map = {'XDR': 5 # , 'Pre-XDR': 4 # , 'MDR': 3 # , 'Pre-MDR': 2 # , 'Other': 1 # , 'Sensitive': 0} # create a labels col that is mapped based on drtype_mode merged_df3$drtype_mode_labels = merged_df3$drtype_mode merged_df3$drtype_mode_labels = as.factor(merged_df3$drtype_mode) levels(merged_df3$drtype_mode_labels) levels(merged_df3$drtype_mode_labels) <- c('Sensitive', 'Other' , 'Pre-MDR', 'MDR' , 'Pre-XDR', 'XDR') levels(merged_df3$drtype_mode_labels) # check #table(merged_df3$drtype) table(merged_df3$drtype_mode) table(merged_df3$drtype_mode_labels) sum(table(merged_df3$drtype_mode_labels)) ############################################## # lineage table(merged_df3$lineage) sum(table(merged_df3$lineage_labels)) # write file outfile_merged_df3 = paste0(outdir, '/', tolower(gene), '_merged_df3.csv') outfile_merged_df3 write.csv(merged_df3, outfile_merged_df3) outfile_merged_df2 = paste0(outdir, '/', tolower(gene), '_merged_df2.csv') outfile_merged_df2 write.csv(merged_df2, outfile_merged_df2) ################################################### ################################################### ################################################### source("~/git/LSHTM_analysis/config/alr.R") source("~/git/LSHTM_analysis/config/embb.R") source("~/git/LSHTM_analysis/config/gid.R") source("~/git/LSHTM_analysis/config/katg.R") source("~/git/LSHTM_analysis/config/pnca.R") source("~/git/LSHTM_analysis/config/rpob.R") df3_filename = paste0("/home/tanu/git/Data/", drug, "/output/", tolower(gene), "_merged_df3.csv") df3 = read.csv(df3_filename) # mutationinformation length(unique((df3$mutationinformation))) #dm _om table(df3$mutation_info) table(df3$mutation_info_labels) table(df3$mutation_info_orig) table(df3$mutation_info_labels_orig) # test_set na_count <-sapply(df3, function(y) sum(length(which(is.na(y))))) na_count[drug] # training set table(df3[drug]) # drtype: MDR and XDR #table(df3$drtype) orig i.e. incorrect ones! table(df3$drtype_mode_labels) ############################ # Training data ############################ tr_df = df3[!is.na(df3[drug]),] table(tr_df$dst) table(tr_df[drug]) bts_df = df3[is.na(df3[drug]),] table(bts_df$dst_mode)