getwd() setwd("~/git/LSHTM_analysis/scripts/plotting") getwd() ######################################################### # TASK: output barplot by position with each bar coloured by # its stability value and active site positions indicated # according to colour specified in "subcols_axis_PS.R" ######################################################### #======================================================================= ############################################################ # 1: Installing and loading required packages and functions ############################################################ #source("Header_TT.R") library(ggplot2) library(data.table) source("barplot_colour_function.R") #source("subcols_axis.R") source("subcols_axis_PS.R") # should return the following dfs, directories and variables # mut_pos_cols # my_df # my_df_u # my_df_u_lig # dup_muts cat(paste0("Directories imported:" , "\ndatadir:", datadir , "\nindir:", indir , "\noutdir:", outdir , "\nplotdir:", plotdir)) cat(paste0("Variables imported:" , "\ndrug:", drug , "\ngene:", gene , "\ngene_match:", gene_match , "\nLength of upos:", length(upos) , "\nAngstrom symbol:", angstroms_symbol)) # clear excess variable rm(my_df, upos, dup_muts, my_df_u_lig) #======================================================================= #================ # Inspecting mut_pos_cols # position numbers and colours # open file from desktop ("sample_axis_cols") for cross checking #================ table(mut_pos_cols$lab_bg) check_lab_bg = sum( table(mut_pos_cols$lab_bg) ) == nrow(mut_pos_cols) # should be True check_lab_bg table(mut_pos_cols$lab_bg2) check_lab_bg2 = sum( table(mut_pos_cols$lab_bg2) ) == nrow(mut_pos_cols) # should be True check_lab_bg2 table(mut_pos_cols$lab_fg) check_lab_fg = sum( table(mut_pos_cols$lab_fg) ) == nrow(mut_pos_cols) # should be True check_lab_fg # sanity checks: if (check_lab_bg && check_lab_bg2 && check_lab_fg) { print("PASS: No. of assigned colours match length") }else{ print("FAIL: length of assigned colours mismatch") quit() } # very important! my_axis_colours = mut_pos_cols$lab_fg # now clear mut_pos_cols rm(mut_pos_cols) #======================================================================= #================ # Data for plots #================ # REASSIGNMENT as necessary df = my_df_u # sanity checks str(df) ########################### # 2: Plot: DUET scores ########################### #========================== # Plot 2: Barplot with scores (unordered) # corresponds to duet_outcome # Stacked Barplot with colours: duet_outcome @ position coloured by # stability scores. This is a barplot where each bar corresponds # to a SNP and is coloured by its corresponding DUET stability value. # Normalised values (range between -1 and 1 ) to aid visualisation # NOTE: since barplot plots discrete values, colour = score, so number of # colours will be equal to the no. of unique normalised scores # rather than a continuous scale # will require generating the colour scale separately. #============================ # sanity checks upos = unique(df$position) table(df$duet_outcome) table(df$duet_outcome) # add frequency of positions (from lib data.table) setDT(df)[, pos_count := .N, by = .(position)] # this is cummulative table(df$pos_count) # use group by on this library(dplyr) snpsBYpos_df <- df %>% group_by(position) %>% summarize(snpsBYpos = mean(pos_count)) table(snpsBYpos_df$snpsBYpos) snp_count = sort(unique(snpsBYpos_df$snpsBYpos)) # sanity checks # should be a factor df$duet_outcome = as.factor(df$duet_outcome) is.factor(df$duet_outcome) table(df$duet_outcome) # should be -1 and 1 min(df$duet_scaled) max(df$duet_scaled) # sanity checks # very important!!!! tapply(df$duet_scaled, df$duet_outcome, min) tapply(df$duet_scaled, df$duet_outcome, max) # My colour FUNCTION: based on group and subgroup # in my case; # df = df # group = duet_outcome # subgroup = normalised score i.e duet_scaled # check unique values in normalised data u = unique(df$duet_scaled) cat("No. of unique values in normalised data:", length(u)) #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # Run this section if rounding is to be used # specify number for rounding #n = 3 #df$duet_scaledR = round(df$duet_scaled, n) #ur = unique(df$duet_scaledR) # create an extra column called group which contains the "gp name and score" # so colours can be generated for each unique values in this column #my_grp = df$duet_scaledR # rounding my_grp = df$duet_scaled # no rounding #%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% df$group <- paste0(df$duet_outcome, "_", my_grp, sep = "") # Call the function to create the palette based on the group defined above colours <- ColourPalleteMulti(df, "duet_outcome", "my_grp") print(paste0("Colour palette generated for: ", length(colours), " colours")) my_title = "Protein stability (DUET)" #======================== # plot with axis colours #======================== class(df$lab_bg) # define cartesian coord my_xlim = length(unique(df$position)); my_xlim # axis label size my_xals = 18 my_yals = 18 # axes text size my_xats = 14 my_yats = 18 #****************** # generate plot: with axis colours #****************** # plot name and location # outdir/ (should be imported from reading file) plotdir = paste0(outdir, "/", "plots") #should be imported from reading file print(paste0("plot will be in:", plotdir)) bp_aa_subcols_duet = "barplot_acoloured_PS.svg" plot_bp_aa_subcols_duet = paste0(outdir, "/plots/", bp_aa_subcols_duet) print(paste0("plot name:", plot_bp_aa_subcols_duet)) svg(plot_bp_aa_subcols_duet, width = 26, height = 4) g = ggplot(df, aes(factor(position, ordered = T))) outPlot = g + coord_cartesian(xlim = c(1, my_xlim) #, ylim = c(0, 6) , ylim = c(0, max(snp_count)) , clip = "off") + geom_bar(aes(fill = group), colour = "grey") + scale_fill_manual(values = colours , guide = "none") + geom_tile(aes(,-0.8, width = 0.95, height = 0.85) , fill = df$lab_bg) + geom_tile(aes(,-1.2, width = 0.95, height = -0.2) , fill = df$lab_bg2) + # Here it"s important to specify that your axis goes from 1 to max number of levels theme(axis.text.x = element_text(size = my_xats , angle = 90 , hjust = 1 , vjust = 0.4 , colour = my_axis_colours) , axis.text.y = element_text(size = my_yats , angle = 0 , hjust = 1 , vjust = 0) , axis.title.x = element_text(size = my_xals) , axis.title.y = element_text(size = my_yals ) , axis.ticks.x = element_blank()) + labs(title = "" , x = "position" , y = "Frequency") print(outPlot) dev.off() #!!!!!!!!!!!!!!!! #Warning message: # Vectorized input to `element_text()` is not officially supported. #Results may be unexpected or may change in future versions of ggplot2. #!!!!!!!!!!!!!!!!! # for sanity and good practice #rm(df)